Base math
Complete base mathematical formulation for a Calliope model.
This math is always applied but can be overridden with pre-defined additional math or your own math .
A guide to math documentation
If a math component's initial conditions are met (the first if
statement), it will be applied to a model.
For each objective , constraint and global expression , a number of sub-conditions then apply (the subsequent, indented if
statements) to decide on the specific expression to apply at a given iteration of the component dimensions.
In the expressions, terms in bold font are decision variables and terms in italic font are parameters .
The decision variables and parameters are listed at the end of the page; they also refer back to the global expressions / constraints in which they are used.
Those parameters which are defined over time (timesteps
) in the expressions can be defined by a user as a single, time invariant value, or as a timeseries that is loaded from file or dataframe .
Note
For every math component in the documentation, we include the YAML snippet that was used to generate the math in a separate tab.
Download the base math formulation as a YAML file
Objective
min_cost_optimisation
Minimise the total cost of installing and operating all technologies in the system. If multiple cost classes are present (e.g., monetary and co2 emissions), the weighted sum of total costs is minimised. Cost class weights can be defined in the indexed parameter objective_cost_weights
.
Uses
Math YAML
\[
\begin{array}{l}
\min{}\!\!:\\[2em]
\quad \text{if } (\bigvee\limits_{\substack{\text{node} \in \text{nodes} \\ \text{tech} \in \text{techs} \\ \text{cost} \in \text{costs}}} (cost))\land{}(\text{config.ensure\_feasibility}\mathord{=}\text{true})\!\!:\\
\qquad \sum\limits_{\text{cost} \in \text{costs}} (\sum\limits_{\text{[nodes,techs]} \in \text{[nodes,techs]}} (\textbf{cost}_\text{node,tech,cost}) \times \textit{objective\_cost\_weights}) + \sum\limits_{\text{timestep} \in \text{timesteps}} (\sum\limits_{\text{[carriers,nodes]} \in \text{[carriers,nodes]}} (\textbf{unmet\_demand}_\text{node,carrier,timestep} - \textbf{unused\_supply}_\text{node,carrier,timestep}) \times \textit{timestep\_weights}_\text{timestep}) \times \textit{bigM}\\[2em]
\quad \text{if } (\bigvee\limits_{\substack{\text{node} \in \text{nodes} \\ \text{tech} \in \text{techs} \\ \text{cost} \in \text{costs}}} (cost))\land{}(\neg (\text{config.ensure\_feasibility}\mathord{=}\text{true}))\!\!:\\
\qquad \sum\limits_{\text{cost} \in \text{costs}} (\sum\limits_{\text{[nodes,techs]} \in \text{[nodes,techs]}} (\textbf{cost}_\text{node,tech,cost}) \times \textit{objective\_cost\_weights})\\[2em]
\quad \text{if } (\neg (\bigvee\limits_{\substack{\text{node} \in \text{nodes} \\ \text{tech} \in \text{techs} \\ \text{cost} \in \text{costs}}} (cost)))\land{}(\text{config.ensure\_feasibility}\mathord{=}\text{true})\!\!:\\
\qquad \sum\limits_{\text{timestep} \in \text{timesteps}} (\sum\limits_{\text{[carriers,nodes]} \in \text{[carriers,nodes]}} (\textbf{unmet\_demand}_\text{node,carrier,timestep} - \textbf{unused\_supply}_\text{node,carrier,timestep}) \times \textit{timestep\_weights}_\text{timestep}) \times \textit{bigM}\\[2em]
\quad \text{if } (\neg (\bigvee\limits_{\substack{\text{node} \in \text{nodes} \\ \text{tech} \in \text{techs} \\ \text{cost} \in \text{costs}}} (cost)))\land{}(\neg (\text{config.ensure\_feasibility}\mathord{=}\text{true}))\!\!:\\
\qquad 0\\[2em]
\end{array}
\]
equations :
- where : any(cost, over=[nodes, techs, costs])
expression : "sum(\n sum(cost, over=[nodes, techs])\n * objective_cost_weights,\n\
\ over=costs\n) + $unmet_demand"
- where : NOT any(cost, over=[nodes, techs, costs])
expression : $unmet_demand
sub_expressions :
unmet_demand :
- where : config.ensure_feasibility=True
expression : "sum(\n sum(unmet_demand - unused_supply, over=[carriers, nodes])\n\
\ * timestep_weights,\n over=timesteps\n) * bigM"
- where : NOT config.ensure_feasibility=True
expression : '0'
sense : minimise
active : true
Subject to
area_use_capacity_per_loc
Set an upper bound on the total area that all technologies with area_use
can occupy at a given node.
Uses
area_use_minimum
Set the lower bound on a technology's area use for any technology with a non-zero lower bound, with or without integer capacity purchasing.
Uses
area_use_per_flow_capacity
Set a fixed relationship between a technology's flow capacity and its area use.
Uses
async_flow_in_milp
Set a technology's ability to have inflow in the same timestep that it has outflow, for any technology using the asynchronous flow binary switch.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{async\_flow\_switch}_\text{node,tech,timestep}))\!\!:\\[2em]
\quad \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_in}_\text{node,tech,carrier,timestep}) \leq (1 - \textbf{async\_flow\_switch}_\text{node,tech,timestep}) \times \textit{bigM}\\
\end{array}
\]
foreach :
- nodes
- techs
- timesteps
where : async_flow_switch
equations :
- expression : sum(flow_in, over=carriers) <= (1 - async_flow_switch) * bigM
async_flow_out_milp
Set a technology's ability to have outflow in the same timestep that it has inflow, for any technology using the asynchronous flow binary switch.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{async\_flow\_switch}_\text{node,tech,timestep}))\!\!:\\[2em]
\quad \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) \leq \textbf{async\_flow\_switch}_\text{node,tech,timestep} \times \textit{bigM}\\
\end{array}
\]
foreach :
- nodes
- techs
- timesteps
where : async_flow_switch
equations :
- expression : sum(flow_out, over=carriers) <= async_flow_switch * bigM
available_flow_cap_binary
Limit flow capacity to zero if the technology is not operating in a given timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep}))\!\!:\\[2em]
\quad \textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep} \leq \textit{flow\_cap\_max}_\text{tech} \times \textbf{operating\_units}_\text{node,tech,timestep}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : available_flow_cap
equations :
- expression : available_flow_cap <= flow_cap_max * operating_units
available_flow_cap_continuous
Limit flow capacity to the value of the flow_cap
decision variable when the technology is operating in a given timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep}))\!\!:\\[2em]
\quad \textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep} \leq \textbf{flow\_cap}_\text{node,tech,carrier}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : available_flow_cap
equations :
- expression : available_flow_cap <= flow_cap
available_flow_cap_max_binary_continuous_switch
Force flow capacity to equal the value of the flow_cap
decision variable if the technology is operating in a given timestep, zero otherwise.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep}))\!\!:\\[2em]
\quad \textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep} \geq \textbf{flow\_cap}_\text{node,tech,carrier} + ((\textbf{operating\_units}_\text{node,tech,timestep} - \textbf{purchased\_units}_\text{node,tech}) \times \textit{flow\_cap\_max}_\text{tech})\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : available_flow_cap
equations :
- expression : available_flow_cap >= flow_cap + ((operating_units - purchased_units)
* flow_cap_max)
balance_conversion
Fix the relationship between a conversion
technology's outflow and consumption.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{conversion} \land \neg (\textit{include\_storage}_\text{tech}\mathord{=}\text{true}))\!\!:\\[2em]
\quad \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}) = \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep})\\
\end{array}
\]
foreach :
- nodes
- techs
- timesteps
where : base_tech=conversion AND NOT include_storage=true
equations :
- expression : sum(flow_out_inc_eff, over=carriers) == sum(flow_in_inc_eff, over=carriers)
balance_demand
Set the upper bound on, or a fixed total of, that a demand technology must dump to its sink in each timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{demand})\!\!:\\[2em]
\quad \text{if } (\exists (\textit{sink\_use\_equals}))\land{}(\textit{sink\_unit}_\text{tech}\mathord{=}\text{per\_area})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} = \textit{sink\_use\_equals} \times \textbf{area\_use}_\text{node,tech}\\[2em]
\quad \text{if } (\exists (\textit{sink\_use\_equals}))\land{}(\textit{sink\_unit}_\text{tech}\mathord{=}\text{per\_cap})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} = \textit{sink\_use\_equals} \times \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_cap}_\text{node,tech,carrier})\\[2em]
\quad \text{if } (\exists (\textit{sink\_use\_equals}))\land{}(\textit{sink\_unit}_\text{tech}\mathord{=}\text{absolute})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} = \textit{sink\_use\_equals} \times 1\\[2em]
\quad \text{if } (\neg (\exists (\textit{sink\_use\_equals})) \land \exists (\textit{sink\_use\_max}_\text{tech,timestep}))\land{}(\textit{sink\_unit}_\text{tech}\mathord{=}\text{per\_area})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} \leq \textit{sink\_use\_max}_\text{tech,timestep} \times \textbf{area\_use}_\text{node,tech}\\[2em]
\quad \text{if } (\neg (\exists (\textit{sink\_use\_equals})) \land \exists (\textit{sink\_use\_max}_\text{tech,timestep}))\land{}(\textit{sink\_unit}_\text{tech}\mathord{=}\text{per\_cap})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} \leq \textit{sink\_use\_max}_\text{tech,timestep} \times \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_cap}_\text{node,tech,carrier})\\[2em]
\quad \text{if } (\neg (\exists (\textit{sink\_use\_equals})) \land \exists (\textit{sink\_use\_max}_\text{tech,timestep}))\land{}(\textit{sink\_unit}_\text{tech}\mathord{=}\text{absolute})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} \leq \textit{sink\_use\_max}_\text{tech,timestep} \times 1\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : base_tech=demand
equations :
- where : sink_use_equals
expression : flow_in_inc_eff == sink_use_equals * $sink_scaler
- where : NOT sink_use_equals AND sink_use_max
expression : flow_in_inc_eff <= sink_use_max * $sink_scaler
sub_expressions :
sink_scaler :
- where : sink_unit=per_area
expression : area_use
- where : sink_unit=per_cap
expression : sum(flow_cap, over=carriers)
- where : sink_unit=absolute
expression : '1'
balance_demand_min_use
Set the lower bound on the quantity of flow a demand
technology must dump to its sink in each timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{sink\_use\_min}_\text{tech}) \land \neg (\exists (\textit{sink\_use\_equals})) \land \textit{base\_tech}_\text{tech}\mathord{=}\text{demand})\!\!:\\[2em]
\quad \text{if } (\textit{sink\_unit}_\text{tech}\mathord{=}\text{per\_area})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} \geq \textit{sink\_use\_min}_\text{tech} \times \textbf{area\_use}_\text{node,tech}\\[2em]
\quad \text{if } (\textit{sink\_unit}_\text{tech}\mathord{=}\text{per\_cap})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} \geq \textit{sink\_use\_min}_\text{tech} \times \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_cap}_\text{node,tech,carrier})\\[2em]
\quad \text{if } (\textit{sink\_unit}_\text{tech}\mathord{=}\text{absolute})\!\!:\\
\qquad \textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep} \geq \textit{sink\_use\_min}_\text{tech} \times 1\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : sink_use_min AND NOT sink_use_equals AND base_tech=demand
equations :
- expression : flow_in_inc_eff >= sink_use_min * $sink_scaler
sub_expressions :
sink_scaler :
- where : sink_unit=per_area
expression : area_use
- where : sink_unit=per_cap
expression : sum(flow_cap, over=carriers)
- where : sink_unit=absolute
expression : '1'
balance_storage
Fix the quantity of carrier stored in a storage
technology at the end of each timestep based on the net flow of carrier charged and discharged and the quantity of carrier stored at the start of the timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } ((\textit{include\_storage}_\text{tech}\mathord{=}\text{true} \lor \textit{base\_tech}_\text{tech}\mathord{=}\text{storage}) \land \neg (\textit{base\_tech}_\text{tech}\mathord{=}\text{supply} \lor \textit{base\_tech}_\text{tech}\mathord{=}\text{demand}))\!\!:\\[2em]
\quad \text{if } (\text{timesteps}\mathord{=}\text{timesteps[0]} \land \neg (\textit{cyclic\_storage}\mathord{=}\text{true}))\!\!:\\
\qquad \textbf{storage}_\text{node,tech,timestep} = \textit{storage\_initial}_\text{tech} \times \textbf{storage\_cap}_\text{node,tech} - \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep})\\[2em]
\quad \text{if } (((\text{timesteps}\mathord{=}\text{timesteps[0]} \land \textit{cyclic\_storage}\mathord{=}\text{true}) \lor \neg (\text{timesteps}\mathord{=}\text{timesteps[0]})) \land \neg (\text{cluster\_first\_timestep}\mathord{=}\text{true}))\!\!:\\
\qquad \textbf{storage}_\text{node,tech,timestep} = ((1 - \textit{storage\_loss}_\text{tech})^{\textit{timestep\_resolution}_\text{timestep-1}}) \times \textbf{storage}_\text{node,tech,timestep-1} - \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep})\\[2em]
\quad \text{if } (\text{cluster\_first\_timestep}\mathord{=}\text{true} \land \neg (\text{timesteps}\mathord{=}\text{timesteps[0]} \land \neg (\textit{cyclic\_storage}\mathord{=}\text{true})))\!\!:\\
\qquad \textbf{storage}_\text{node,tech,timestep} = ((1 - \textit{storage\_loss}_\text{tech})^{\textit{timestep\_resolution}_\text{timestep=lookup\_cluster\_last\_timestep[timestep]}}) \times \textbf{storage}_\text{node,tech,timestep=lookup\_cluster\_last\_timestep[timestep]} - \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep})\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- timesteps
where : (include_storage=true or base_tech=storage) AND NOT (base_tech=supply OR base_tech=demand)
equations :
- expression : "storage == $storage_previous_step -\n sum(flow_out_inc_eff, over=carriers)
+ sum(flow_in_inc_eff, over=carriers)"
sub_expressions :
storage_previous_step :
- where : timesteps=get_val_at_index(timesteps=0) AND NOT cyclic_storage=True
expression : storage_initial * storage_cap
- where : "(\n (timesteps=get_val_at_index(timesteps=0) AND cyclic_storage=True)\n\
\ OR NOT timesteps=get_val_at_index(timesteps=0)\n) AND NOT cluster_first_timestep=True"
expression : (1 - storage_loss) ** roll(timestep_resolution, timesteps=1) * roll(storage,
timesteps=1)
- where : cluster_first_timestep=True AND NOT (timesteps=get_val_at_index(timesteps=0)
AND NOT cyclic_storage=True)
expression : (1 - storage_loss) ** select_from_lookup_arrays(timestep_resolution,
timesteps=lookup_cluster_last_timestep) * select_from_lookup_arrays(storage,
timesteps=lookup_cluster_last_timestep)
balance_supply_min_use
Set the lower bound on the quantity of its source a supply
technology must use in each timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{source\_use\_min}_\text{tech}) \land \neg (\exists (\textit{source\_use\_equals})) \land \textit{base\_tech}_\text{tech}\mathord{=}\text{supply})\!\!:\\[2em]
\quad \text{if } (\textit{source\_unit}_\text{tech}\mathord{=}\text{per\_area})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} \geq \textit{source\_use\_min}_\text{tech} \times \textbf{area\_use}_\text{node,tech}\\[2em]
\quad \text{if } (\textit{source\_unit}_\text{tech}\mathord{=}\text{per\_cap})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} \geq \textit{source\_use\_min}_\text{tech} \times \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_cap}_\text{node,tech,carrier})\\[2em]
\quad \text{if } (\textit{source\_unit}_\text{tech}\mathord{=}\text{absolute})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} \geq \textit{source\_use\_min}_\text{tech} \times 1\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- timesteps
where : source_use_min AND NOT source_use_equals AND base_tech=supply
equations :
- expression : source_use >= source_use_min * $source_scaler
sub_expressions :
source_scaler :
- where : source_unit=per_area
expression : area_use
- where : source_unit=per_cap
expression : sum(flow_cap, over=carriers)
- where : source_unit=absolute
expression : '1'
balance_supply_no_storage
Fix the outflow of a supply
technology to its consumption of the available source.
Uses
balance_supply_with_storage
Fix the outflow of a supply
technology to its consumption of the available source, with a storage buffer to temporally offset the outflow from source consumption.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{storage}_\text{node,tech,timestep}) \land \textit{base\_tech}_\text{tech}\mathord{=}\text{supply})\!\!:\\[2em]
\quad \text{if } (\text{timesteps}\mathord{=}\text{timesteps[0]} \land \neg (\textit{cyclic\_storage}\mathord{=}\text{true}))\!\!:\\
\qquad \textbf{storage}_\text{node,tech,timestep} = \textit{storage\_initial}_\text{tech} \times \textbf{storage\_cap}_\text{node,tech} + (\textbf{source\_use}_\text{node,tech,timestep} \times \textit{source\_eff}_\text{tech}) - \textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}\\[2em]
\quad \text{if } (((\text{timesteps}\mathord{=}\text{timesteps[0]} \land \textit{cyclic\_storage}\mathord{=}\text{true}) \lor \neg (\text{timesteps}\mathord{=}\text{timesteps[0]})) \land \neg (\text{cluster\_first\_timestep}\mathord{=}\text{true}))\!\!:\\
\qquad \textbf{storage}_\text{node,tech,timestep} = ((1 - \textit{storage\_loss}_\text{tech})^{\textit{timestep\_resolution}_\text{timestep-1}}) \times \textbf{storage}_\text{node,tech,timestep-1} + (\textbf{source\_use}_\text{node,tech,timestep} \times \textit{source\_eff}_\text{tech}) - \textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}\\[2em]
\quad \text{if } (\text{cluster\_first\_timestep}\mathord{=}\text{true} \land \neg (\text{timesteps}\mathord{=}\text{timesteps[0]} \land \neg (\textit{cyclic\_storage}\mathord{=}\text{true})))\!\!:\\
\qquad \textbf{storage}_\text{node,tech,timestep} = ((1 - \textit{storage\_loss}_\text{tech})^{\textit{timestep\_resolution}_\text{timestep=lookup\_cluster\_last\_timestep[timestep]}}) \times \textbf{storage}_\text{node,tech,timestep=lookup\_cluster\_last\_timestep[timestep]} + (\textbf{source\_use}_\text{node,tech,timestep} \times \textit{source\_eff}_\text{tech}) - \textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : storage AND base_tech=supply
equations :
- expression : storage == $storage_previous_step + source_use * source_eff - flow_out_inc_eff
sub_expressions :
storage_previous_step :
- where : timesteps=get_val_at_index(timesteps=0) AND NOT cyclic_storage=True
expression : storage_initial * storage_cap
- where : "(\n (timesteps=get_val_at_index(timesteps=0) AND cyclic_storage=True)\n\
\ OR NOT timesteps=get_val_at_index(timesteps=0)\n) AND NOT cluster_first_timestep=True"
expression : (1 - storage_loss) ** roll(timestep_resolution, timesteps=1) * roll(storage,
timesteps=1)
- where : cluster_first_timestep=True AND NOT (timesteps=get_val_at_index(timesteps=0)
AND NOT cyclic_storage=True)
expression : (1 - storage_loss) ** select_from_lookup_arrays(timestep_resolution,
timesteps=lookup_cluster_last_timestep) * select_from_lookup_arrays(storage,
timesteps=lookup_cluster_last_timestep)
balance_transmission
Fix the relationship between between carrier flowing into and out of a transmission
link in each timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission})\!\!:\\[2em]
\quad \sum\limits_{\text{[nodes,carriers]} \in \text{[nodes,carriers]}} (\textbf{flow\_out\_inc\_eff}_\text{node,tech,carrier,timestep}) = \sum\limits_{\text{[nodes,carriers]} \in \text{[nodes,carriers]}} (\textbf{flow\_in\_inc\_eff}_\text{node,tech,carrier,timestep})\\
\end{array}
\]
foreach :
- techs
- timesteps
where : base_tech=transmission
equations :
- expression : sum(flow_out_inc_eff, over=[nodes, carriers]) == sum(flow_in_inc_eff,
over=[nodes, carriers])
export_balance
Set the lower bound of a technology's outflow to a technology's carrier export, for any technologies that can export carriers out of the system.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_export}_\text{node,tech,carrier,timestep}))\!\!:\\[2em]
\quad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \geq \textbf{flow\_export}_\text{node,tech,carrier,timestep}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_export
equations :
- expression : flow_out >= flow_export
flow_capacity_max_purchase_milp
Set the upper bound on a technology's flow capacity, for any technology with integer capacity purchasing.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers }
\!\!,\\
\text{if } (\exists (\textbf{purchased\_units}_\text{node,tech}))\!\!:\\[2em]
\quad \text{if } (\exists (\textit{flow\_cap\_max}_\text{tech}))\!\!:\\
\qquad \textbf{flow\_cap}_\text{node,tech,carrier} \leq \textit{flow\_cap\_max}_\text{tech} \times \textbf{purchased\_units}_\text{node,tech}\\[2em]
\quad \text{if } (\neg (\exists (\textit{flow\_cap\_max}_\text{tech})))\!\!:\\
\qquad \textbf{flow\_cap}_\text{node,tech,carrier} \leq \textit{bigM} \times \textbf{purchased\_units}_\text{node,tech}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
where : purchased_units
equations :
- where : flow_cap_max
expression : flow_cap <= flow_cap_max * purchased_units
- where : NOT flow_cap_max
expression : flow_cap <= bigM * purchased_units
flow_capacity_minimum
Set the lower bound on a technology's flow capacity, for any technology with a non-zero lower bound, with or without integer capacity purchasing.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers }
\!\!,\\
\text{if } (\exists (\textit{flow\_cap\_min}_\text{tech}))\!\!:\\[2em]
\quad \text{if } (\neg (\exists (\textbf{purchased\_units}_\text{node,tech})))\!\!:\\
\qquad \textbf{flow\_cap}_\text{node,tech,carrier} \geq \textit{flow\_cap\_min}_\text{tech}\\[2em]
\quad \text{if } (\exists (\textbf{purchased\_units}_\text{node,tech}))\!\!:\\
\qquad \textbf{flow\_cap}_\text{node,tech,carrier} \geq \textit{flow\_cap\_min}_\text{tech} \times \textbf{purchased\_units}_\text{node,tech}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
where : flow_cap_min
equations :
- where : NOT purchased_units
expression : flow_cap >= flow_cap_min
- where : purchased_units
expression : flow_cap >= flow_cap_min * purchased_units
flow_capacity_per_storage_capacity_max
Set the upper bound of storage flow capacity relative to its storage capacity.
Uses
flow_capacity_per_storage_capacity_min
Set the lower bound of storage flow capacity relative to its storage capacity.
Uses
flow_capacity_systemwide_max
Set an upper bound on flow capacity of a technology across all nodes in which the technology exists.
Uses
flow_capacity_systemwide_min
Set a lower bound on flow capacity of a technology across all nodes in which the technology exists.
Uses
flow_capacity_units_milp
Fix the flow capacity of any technology using integer units to define its capacity.
Uses
flow_export_max
Set the upper bound of a technology's carrier export, for any technologies that can export carriers out of the system.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_export}_\text{node,tech,carrier,timestep}) \land \exists (\textit{export\_max}_\text{tech}))\!\!:\\[2em]
\quad \text{if } (\exists (\textbf{operating\_units}_\text{node,tech,timestep}))\!\!:\\
\qquad \textbf{flow\_export}_\text{node,tech,carrier,timestep} \leq \textit{export\_max}_\text{tech} \times \textbf{operating\_units}_\text{node,tech,timestep}\\[2em]
\quad \text{if } (\neg (\exists (\textbf{operating\_units}_\text{node,tech,timestep})))\!\!:\\
\qquad \textbf{flow\_export}_\text{node,tech,carrier,timestep} \leq \textit{export\_max}_\text{tech}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_export AND export_max
equations :
- where : operating_units
expression : flow_export <= export_max * operating_units
- where : NOT operating_units
expression : flow_export <= export_max
flow_in_max
Set the upper bound of a technology's inflow.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{carrier\_in}_\text{node,tech,carrier}) \land \neg (\exists (\textbf{operating\_units}_\text{node,tech,timestep})))\!\!:\\[2em]
\quad \textbf{flow\_in}_\text{node,tech,carrier,timestep} \leq \textbf{flow\_cap}_\text{node,tech,carrier} \times \textit{timestep\_resolution}_\text{timestep}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : carrier_in AND NOT operating_units
equations :
- expression : flow_in <= flow_cap * timestep_resolution
flow_in_max_milp
Set the upper bound of a technology's ability to consume carriers, for any technology using integer units to define its capacity.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_in}_\text{node,tech,carrier,timestep}) \land \exists (\textbf{operating\_units}_\text{node,tech,timestep}) \land \exists (\textit{flow\_cap\_per\_unit}_\text{tech}))\!\!:\\[2em]
\quad \textbf{flow\_in}_\text{node,tech,carrier,timestep} \leq \textbf{operating\_units}_\text{node,tech,timestep} \times \textit{timestep\_resolution}_\text{timestep} \times \textit{flow\_cap\_per\_unit}_\text{tech}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_in AND operating_units AND flow_cap_per_unit
equations :
- expression : flow_in <= operating_units * timestep_resolution * flow_cap_per_unit
flow_out_max
Set the upper bound of a technology's outflow.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{carrier\_out}_\text{node,tech,carrier}) \land \neg (\exists (\textbf{operating\_units}_\text{node,tech,timestep})))\!\!:\\[2em]
\quad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \leq \textbf{flow\_cap}_\text{node,tech,carrier} \times \textit{timestep\_resolution}_\text{timestep} \times \textit{flow\_out\_parasitic\_eff}_\text{tech}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : carrier_out AND NOT operating_units
equations :
- expression : flow_out <= flow_cap * timestep_resolution * flow_out_parasitic_eff
flow_out_max_milp
Set the upper bound of a technology's ability to produce carriers, for any technology using integer units to define its capacity.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) \land \exists (\textbf{operating\_units}_\text{node,tech,timestep}) \land \exists (\textit{flow\_cap\_per\_unit}_\text{tech}))\!\!:\\[2em]
\quad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \leq \textbf{operating\_units}_\text{node,tech,timestep} \times \textit{timestep\_resolution}_\text{timestep} \times \textit{flow\_cap\_per\_unit}_\text{tech} \times \textit{flow\_out\_parasitic\_eff}_\text{tech}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_out AND operating_units AND flow_cap_per_unit
equations :
- expression : flow_out <= operating_units * timestep_resolution * flow_cap_per_unit
* flow_out_parasitic_eff
flow_out_min
Set the lower bound of a technology's outflow.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{flow\_out\_min\_relative}_\text{tech}) \land \neg (\exists (\textbf{operating\_units}_\text{node,tech,timestep})))\!\!:\\[2em]
\quad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \geq \textbf{flow\_cap}_\text{node,tech,carrier} \times \textit{timestep\_resolution}_\text{timestep} \times \textit{flow\_out\_min\_relative}_\text{tech}\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_out_min_relative AND NOT operating_units
equations :
- expression : flow_out >= flow_cap * timestep_resolution * flow_out_min_relative
flow_out_min_milp
Set the lower bound of a technology's ability to produce carriers, for any technology using integer units to define its capacity.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) \land \exists (\textbf{operating\_units}_\text{node,tech,timestep}) \land \exists (\textit{flow\_out\_min\_relative}_\text{tech}))\!\!:\\[2em]
\quad \text{if } (\exists (\textit{flow\_cap\_per\_unit}_\text{tech}))\!\!:\\
\qquad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \geq \textbf{operating\_units}_\text{node,tech,timestep} \times \textit{timestep\_resolution}_\text{timestep} \times \textit{flow\_cap\_per\_unit}_\text{tech} \times \textit{flow\_out\_min\_relative}_\text{tech}\\[2em]
\quad \text{if } (\exists (\textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep}))\!\!:\\
\qquad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \geq \textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep} \times \textit{timestep\_resolution}_\text{timestep} \times \textit{flow\_out\_min\_relative}_\text{tech}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_out AND operating_units AND flow_out_min_relative
equations :
- where : flow_cap_per_unit
expression : flow_out >= operating_units * timestep_resolution * flow_cap_per_unit
* flow_out_min_relative
- where : available_flow_cap
expression : flow_out >= available_flow_cap * timestep_resolution * flow_out_min_relative
force_zero_area_use
Set a technology's area use to zero if its flow capacity upper bound is zero.
Uses
ramping_down
Set the upper bound on a technology's ability to ramp outflow down beyond a certain percentage compared to the previous timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{flow\_ramping}_\text{tech}) \land \neg (\text{timesteps}\mathord{=}\text{timesteps[0]}))\!\!:\\[2em]
\quad \text{if } (\exists (\textit{carrier\_out}_\text{node,tech,carrier}) \land \neg (\exists (\textit{carrier\_in}_\text{node,tech,carrier})))\!\!:\\
\qquad -1 \times \textit{flow\_ramping}_\text{tech} \times \textbf{flow\_cap}_\text{node,tech,carrier} \leq \frac{ \textbf{flow\_out}_\text{node,tech,carrier,timestep} }{ \textit{timestep\_resolution}_\text{timestep} } - \frac{ \textbf{flow\_out}_\text{node,tech,carrier,timestep-1} }{ \textit{timestep\_resolution}_\text{timestep-1} }\\[2em]
\quad \text{if } (\exists (\textit{carrier\_in}_\text{node,tech,carrier}) \land \neg (\exists (\textit{carrier\_out}_\text{node,tech,carrier})))\!\!:\\
\qquad -1 \times \textit{flow\_ramping}_\text{tech} \times \textbf{flow\_cap}_\text{node,tech,carrier} \leq \frac{ \textbf{flow\_in}_\text{node,tech,carrier,timestep} }{ \textit{timestep\_resolution}_\text{timestep} } - \frac{ \textbf{flow\_in}_\text{node,tech,carrier,timestep-1} }{ \textit{timestep\_resolution}_\text{timestep-1} }\\[2em]
\quad \text{if } (\exists (\textit{carrier\_in}_\text{node,tech,carrier}) \land \exists (\textit{carrier\_out}_\text{node,tech,carrier}))\!\!:\\
\qquad -1 \times \textit{flow\_ramping}_\text{tech} \times \textbf{flow\_cap}_\text{node,tech,carrier} \leq \frac{ (\textbf{flow\_out}_\text{node,tech,carrier,timestep} - \textbf{flow\_in}_\text{node,tech,carrier,timestep}) }{ \textit{timestep\_resolution}_\text{timestep} } - \frac{ (\textbf{flow\_out}_\text{node,tech,carrier,timestep-1} - \textbf{flow\_in}_\text{node,tech,carrier,timestep-1}) }{ \textit{timestep\_resolution}_\text{timestep-1} }\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_ramping AND NOT timesteps=get_val_at_index(timesteps=0)
equations :
- expression : -1 * flow_ramping * flow_cap <= $flow - roll($flow, timesteps=1)
sub_expressions :
flow :
- where : carrier_out AND NOT carrier_in
expression : flow_out / timestep_resolution
- where : carrier_in AND NOT carrier_out
expression : flow_in / timestep_resolution
- where : carrier_in AND carrier_out
expression : (flow_out - flow_in) / timestep_resolution
ramping_up
Set the upper bound on a technology's ability to ramp outflow up beyond a certain percentage compared to the previous timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{flow\_ramping}_\text{tech}) \land \neg (\text{timesteps}\mathord{=}\text{timesteps[0]}))\!\!:\\[2em]
\quad \text{if } (\exists (\textit{carrier\_out}_\text{node,tech,carrier}) \land \neg (\exists (\textit{carrier\_in}_\text{node,tech,carrier})))\!\!:\\
\qquad \frac{ \textbf{flow\_out}_\text{node,tech,carrier,timestep} }{ \textit{timestep\_resolution}_\text{timestep} } - \frac{ \textbf{flow\_out}_\text{node,tech,carrier,timestep-1} }{ \textit{timestep\_resolution}_\text{timestep-1} } \leq \textit{flow\_ramping}_\text{tech} \times \textbf{flow\_cap}_\text{node,tech,carrier}\\[2em]
\quad \text{if } (\exists (\textit{carrier\_in}_\text{node,tech,carrier}) \land \neg (\exists (\textit{carrier\_out}_\text{node,tech,carrier})))\!\!:\\
\qquad \frac{ \textbf{flow\_in}_\text{node,tech,carrier,timestep} }{ \textit{timestep\_resolution}_\text{timestep} } - \frac{ \textbf{flow\_in}_\text{node,tech,carrier,timestep-1} }{ \textit{timestep\_resolution}_\text{timestep-1} } \leq \textit{flow\_ramping}_\text{tech} \times \textbf{flow\_cap}_\text{node,tech,carrier}\\[2em]
\quad \text{if } (\exists (\textit{carrier\_in}_\text{node,tech,carrier}) \land \exists (\textit{carrier\_out}_\text{node,tech,carrier}))\!\!:\\
\qquad \frac{ (\textbf{flow\_out}_\text{node,tech,carrier,timestep} - \textbf{flow\_in}_\text{node,tech,carrier,timestep}) }{ \textit{timestep\_resolution}_\text{timestep} } - \frac{ (\textbf{flow\_out}_\text{node,tech,carrier,timestep-1} - \textbf{flow\_in}_\text{node,tech,carrier,timestep-1}) }{ \textit{timestep\_resolution}_\text{timestep-1} } \leq \textit{flow\_ramping}_\text{tech} \times \textbf{flow\_cap}_\text{node,tech,carrier}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_ramping AND NOT timesteps=get_val_at_index(timesteps=0)
equations :
- expression : $flow - roll($flow, timesteps=1) <= flow_ramping * flow_cap
sub_expressions :
flow :
- where : carrier_out AND NOT carrier_in
expression : flow_out / timestep_resolution
- where : carrier_in AND NOT carrier_out
expression : flow_in / timestep_resolution
- where : carrier_in AND carrier_out
expression : (flow_out - flow_in) / timestep_resolution
set_storage_initial
Fix the relationship between carrier stored in a storage
technology at the start and end of the whole model period.
Uses
source_availability_supply
Set the upper bound on, or a fixed total of, a supply
technology's ability to consume its available resource.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{source\_use}_\text{node,tech,timestep}) \land (\exists (\textit{source\_use\_equals}) \lor \exists (\textit{source\_use\_max}_\text{tech})))\!\!:\\[2em]
\quad \text{if } (\exists (\textit{source\_use\_equals}))\land{}(\textit{source\_unit}_\text{tech}\mathord{=}\text{per\_area})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} = \textit{source\_use\_equals} \times \textbf{area\_use}_\text{node,tech}\\[2em]
\quad \text{if } (\exists (\textit{source\_use\_equals}))\land{}(\textit{source\_unit}_\text{tech}\mathord{=}\text{per\_cap})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} = \textit{source\_use\_equals} \times \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_cap}_\text{node,tech,carrier})\\[2em]
\quad \text{if } (\exists (\textit{source\_use\_equals}))\land{}(\textit{source\_unit}_\text{tech}\mathord{=}\text{absolute})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} = \textit{source\_use\_equals} \times 1\\[2em]
\quad \text{if } (\neg (\exists (\textit{source\_use\_equals})) \land \exists (\textit{source\_use\_max}_\text{tech}))\land{}(\textit{source\_unit}_\text{tech}\mathord{=}\text{per\_area})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} \leq \textit{source\_use\_max}_\text{tech} \times \textbf{area\_use}_\text{node,tech}\\[2em]
\quad \text{if } (\neg (\exists (\textit{source\_use\_equals})) \land \exists (\textit{source\_use\_max}_\text{tech}))\land{}(\textit{source\_unit}_\text{tech}\mathord{=}\text{per\_cap})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} \leq \textit{source\_use\_max}_\text{tech} \times \sum\limits_{\text{carrier} \in \text{carriers}} (\textbf{flow\_cap}_\text{node,tech,carrier})\\[2em]
\quad \text{if } (\neg (\exists (\textit{source\_use\_equals})) \land \exists (\textit{source\_use\_max}_\text{tech}))\land{}(\textit{source\_unit}_\text{tech}\mathord{=}\text{absolute})\!\!:\\
\qquad \textbf{source\_use}_\text{node,tech,timestep} \leq \textit{source\_use\_max}_\text{tech} \times 1\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- timesteps
where : source_use AND (source_use_equals OR source_use_max)
equations :
- where : source_use_equals
expression : source_use == source_use_equals * $source_scaler
- where : NOT source_use_equals AND source_use_max
expression : source_use <= source_use_max * $source_scaler
sub_expressions :
source_scaler :
- where : source_unit=per_area
expression : area_use
- where : source_unit=per_cap
expression : sum(flow_cap, over=carriers)
- where : source_unit=absolute
expression : '1'
source_capacity_equals_flow_capacity
Set a supply
technology's flow capacity to equal its source capacity.
Uses
source_capacity_minimum
Set the lower bound on a technology's source capacity for any supply technology with a non-zero lower bound, with or without integer capacity purchasing.
Uses
source_max
Set the upper bound of a supply
technology's source consumption.
Uses
storage_capacity_max_purchase_milp
Set the upper bound on a technology's storage capacity, for any technology with integer capacity purchasing.
Uses
storage_capacity_minimum
Set the lower bound on a technology's storage capacity for any technology with a non-zero lower bound, with or without integer capacity purchasing.
Uses
storage_capacity_units_milp
Fix the storage capacity of any technology using integer units to define its capacity.
Uses
storage_discharge_depth_limit
Set the lower bound of the stored carrier a technology must keep in reserve at all times.
Uses
storage_max
Set the upper bound of the amount of carrier a technology can store.
Uses
symmetric_transmission
Fix the flow capacity of two transmission
technologies representing the same link in the system.
Uses
system_balance
Set the global carrier balance of the optimisation problem by fixing the total production of a given carrier to equal the total consumption of that carrier at every node in every timestep.
Uses
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!:\\[2em]
\quad \text{if } (\bigvee\limits_{\text{tech} \in \text{techs}} (carrier_export))\land{}(\text{config.ensure\_feasibility}\mathord{=}\text{true})\!\!:\\
\qquad \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) - \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_in}_\text{node,tech,carrier,timestep}) - \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_export}_\text{node,tech,carrier,timestep}) + \textbf{unmet\_demand}_\text{node,carrier,timestep} + \textbf{unused\_supply}_\text{node,carrier,timestep} = 0\\[2em]
\quad \text{if } (\bigvee\limits_{\text{tech} \in \text{techs}} (carrier_export))\land{}(\neg (\text{config.ensure\_feasibility}\mathord{=}\text{true}))\!\!:\\
\qquad \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) - \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_in}_\text{node,tech,carrier,timestep}) - \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_export}_\text{node,tech,carrier,timestep}) = 0\\[2em]
\quad \text{if } (\neg (\bigvee\limits_{\text{tech} \in \text{techs}} (carrier_export)))\land{}(\text{config.ensure\_feasibility}\mathord{=}\text{true})\!\!:\\
\qquad \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) - \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_in}_\text{node,tech,carrier,timestep}) + \textbf{unmet\_demand}_\text{node,carrier,timestep} + \textbf{unused\_supply}_\text{node,carrier,timestep} = 0\\[2em]
\quad \text{if } (\neg (\bigvee\limits_{\text{tech} \in \text{techs}} (carrier_export)))\land{}(\neg (\text{config.ensure\_feasibility}\mathord{=}\text{true}))\!\!:\\
\qquad \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_out}_\text{node,tech,carrier,timestep}) - \sum\limits_{\text{tech} \in \text{techs}} (\textbf{flow\_in}_\text{node,tech,carrier,timestep}) = 0\\[2em]
\end{array}
\]
foreach :
- nodes
- carriers
- timesteps
equations :
- expression : sum(flow_out, over=techs) - sum(flow_in, over=techs) - $flow_export
+ $unmet_demand_and_unused_supply == 0
sub_expressions :
flow_export :
- where : any(carrier_export, over=techs)
expression : sum(flow_export, over=techs)
- where : NOT any(carrier_export, over=techs)
expression : '0'
unmet_demand_and_unused_supply :
- where : config.ensure_feasibility=True
expression : unmet_demand + unused_supply
- where : NOT config.ensure_feasibility=True
expression : '0'
unit_capacity_max_systemwide_milp
Set the upper bound on the total number of units of a technology that can be purchased across all nodes where the technology can exist, for any technology using integer units to define its capacity.
Uses
unit_capacity_min_systemwide_milp
Set the lower bound on the total number of units of a technology that can be purchased across all nodes where the technology can exist, for any technology using integer units to define its capacity.
Uses
unit_commitment_milp
Set the upper bound of the number of integer units of technology that can exist, for any technology using integer units to define its capacity.
Uses
Where
cost
The total annualised costs of a technology, including installation and operation costs.
Used in
Uses
Unit : cost
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ cost }\negthickspace \in \negthickspace\text{ costs }
\!\!,\\
\text{if } (\exists (\textbf{cost\_investment\_annualised}_\text{node,tech,cost}) \lor \exists (\textbf{cost\_operation\_variable}_\text{node,tech,cost,timestep}) \lor \exists (\textbf{cost\_operation\_fixed}_\text{node,tech,cost}))\!\!:\\[2em]
\quad \text{if } (\exists (\textbf{cost\_operation\_variable}_\text{node,tech,cost,timestep}))\!\!:\\
\qquad (\textbf{cost\_investment\_annualised}_\text{node,tech,cost}\vee{}0) + \sum\limits_{\text{timestep} \in \text{timesteps}} (\textbf{cost\_operation\_variable}_\text{node,tech,cost,timestep}) + (\textbf{cost\_operation\_fixed}_\text{node,tech,cost}\vee{}0)\\[2em]
\quad \text{if } (\neg (\exists (\textbf{cost\_operation\_variable}_\text{node,tech,cost,timestep})))\!\!:\\
\qquad (\textbf{cost\_investment\_annualised}_\text{node,tech,cost}\vee{}0) + (\textbf{cost\_operation\_fixed}_\text{node,tech,cost}\vee{}0)\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- costs
where : cost_investment_annualised OR cost_operation_variable OR cost_operation_fixed
equations :
- expression : default_if_empty(cost_investment_annualised, 0) + $cost_operation_sum
+ default_if_empty(cost_operation_fixed, 0)
sub_expressions :
cost_operation_sum :
- where : cost_operation_variable
expression : sum(cost_operation_variable, over=timesteps)
- where : NOT cost_operation_variable
expression : '0'
active : true
cost_investment
The installation costs of a technology, including those linked to the nameplate capacity, land use, storage size, and binary/integer unit purchase.
Used in
Uses
Unit : cost
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ cost }\negthickspace \in \negthickspace\text{ costs }
\!\!,\\
\text{if } (\exists (\textbf{cost\_investment\_flow\_cap}_\text{node,tech,carrier,cost}) \lor \exists (\textbf{cost\_investment\_storage\_cap}_\text{node,tech,cost}) \lor \exists (\textbf{cost\_investment\_source\_cap}_\text{node,tech,cost}) \lor \exists (\textbf{cost\_investment\_area\_use}_\text{node,tech,cost}) \lor \exists (\textbf{cost\_investment\_purchase}_\text{node,tech,cost}))\!\!:\\[2em]
\quad \sum\limits_{\text{carrier} \in \text{carriers}} ((\textbf{cost\_investment\_flow\_cap}_\text{node,tech,carrier,cost}\vee{}0)) + (\textbf{cost\_investment\_storage\_cap}_\text{node,tech,cost}\vee{}0) + (\textbf{cost\_investment\_source\_cap}_\text{node,tech,cost}\vee{}0) + (\textbf{cost\_investment\_area\_use}_\text{node,tech,cost}\vee{}0) + (\textbf{cost\_investment\_purchase}_\text{node,tech,cost}\vee{}0)\\
\end{array}
\]
foreach :
- nodes
- techs
- costs
where : cost_investment_flow_cap OR cost_investment_storage_cap OR cost_investment_source_cap
OR cost_investment_area_use OR cost_investment_purchase
equations :
- expression : sum(default_if_empty(cost_investment_flow_cap, 0), over=carriers) +
default_if_empty(cost_investment_storage_cap, 0) + default_if_empty(cost_investment_source_cap,
0) + default_if_empty(cost_investment_area_use, 0) + default_if_empty(cost_investment_purchase,
0)
cost_investment_annualised
An annuity factor has been applied to scale lifetime investment costs to annual values that can be directly compared to operation costs. If the modeling period is not equal to one full year, this will be scaled accordingly.
Used in
Uses
Unit : cost
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ cost }\negthickspace \in \negthickspace\text{ costs }
\!\!,\\
\text{if } (\exists (\textbf{cost\_investment}_\text{node,tech,cost}))\!\!:\\[2em]
\quad \text{if } (\exists (\textit{cost\_depreciation\_rate}_\text{cost,tech}))\!\!:\\
\qquad \frac{ \sum\limits_{\text{timestep} \in \text{timesteps}} (\textit{timestep\_resolution}_\text{timestep} \times \textit{timestep\_weights}_\text{timestep}) }{ 8760 } \times \textit{cost\_depreciation\_rate}_\text{cost,tech} \times \textbf{cost\_investment}_\text{node,tech,cost}\\[2em]
\quad \text{if } (\neg (\exists (\textit{cost\_depreciation\_rate}_\text{cost,tech})) \land \textit{cost\_interest\_rate}_\text{cost,tech}\mathord{=}\text{0})\!\!:\\
\qquad \frac{ \sum\limits_{\text{timestep} \in \text{timesteps}} (\textit{timestep\_resolution}_\text{timestep} \times \textit{timestep\_weights}_\text{timestep}) }{ 8760 } \times \frac{ 1 }{ \textit{lifetime}_\text{tech} } \times \textbf{cost\_investment}_\text{node,tech,cost}\\[2em]
\quad \text{if } (\neg (\exists (\textit{cost\_depreciation\_rate}_\text{cost,tech})) \land \textit{cost\_interest\_rate}_\text{cost,tech}\mathord{>}\text{0})\!\!:\\
\qquad \frac{ \sum\limits_{\text{timestep} \in \text{timesteps}} (\textit{timestep\_resolution}_\text{timestep} \times \textit{timestep\_weights}_\text{timestep}) }{ 8760 } \times \frac{ (\textit{cost\_interest\_rate}_\text{cost,tech} \times ((1 + \textit{cost\_interest\_rate}_\text{cost,tech})^{\textit{lifetime}_\text{tech}})) }{ (((1 + \textit{cost\_interest\_rate}_\text{cost,tech})^{\textit{lifetime}_\text{tech}}) - 1) } \times \textbf{cost\_investment}_\text{node,tech,cost}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- costs
where : cost_investment
equations :
- expression : $annualisation_weight * $depreciation_rate * cost_investment
sub_expressions :
annualisation_weight :
- expression : sum(timestep_resolution * timestep_weights, over=timesteps) / 8760
depreciation_rate :
- where : cost_depreciation_rate
expression : cost_depreciation_rate
- where : NOT cost_depreciation_rate AND cost_interest_rate=0
expression : 1 / lifetime
- where : NOT cost_depreciation_rate AND cost_interest_rate>0
expression : (cost_interest_rate * ((1 + cost_interest_rate) ** lifetime)) / (((1
+ cost_interest_rate) ** lifetime) - 1)
cost_investment_area_use
The investment costs associated with the area used by a technology.
Used in
Uses
Default : 0
cost_investment_flow_cap
The investment costs associated with the nominal/rated capacity of a technology.
Used in
Uses
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ cost }\negthickspace \in \negthickspace\text{ costs }
\!\!,\\
\text{if } (\exists (\textbf{flow\_cap}_\text{node,tech,carrier}) \land (\exists (\textit{cost\_flow\_cap}_\text{cost,tech}) \lor \exists (\textit{cost\_flow\_cap\_per\_distance})))\!\!:\\[2em]
\quad \text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission})\!\!:\\
\qquad (\textit{cost\_flow\_cap}_\text{cost,tech} + (\textit{cost\_flow\_cap\_per\_distance} \times \textit{distance})) \times 0.5 \times \textbf{flow\_cap}_\text{node,tech,carrier}\\[2em]
\quad \text{if } (\neg (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission}))\!\!:\\
\qquad \textit{cost\_flow\_cap}_\text{cost,tech} \times \textbf{flow\_cap}_\text{node,tech,carrier}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- costs
where : flow_cap AND (cost_flow_cap OR cost_flow_cap_per_distance)
equations :
- expression : $cost_sum * flow_cap
sub_expressions :
cost_sum :
- where : base_tech=transmission
expression : (cost_flow_cap + cost_flow_cap_per_distance * distance) * 0.5
- where : NOT base_tech=transmission
expression : cost_flow_cap
cost_investment_purchase
The investment costs associated with the binary purchase of a technology.
Used in
Uses
Default : 0
cost_investment_source_cap
The investment costs associated with the source consumption capacity of a technology.
Used in
Uses
Default : 0
cost_investment_storage_cap
The investment costs associated with the storage capacity of a technology.
Used in
Uses
Default : 0
cost_operation_fixed
The fixed, annual operation costs of a technology, which are calculated relative to investment costs. If the modeling period is not equal to one full year, this will be scaled accordingly.
Used in
Uses
Unit : cost
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ cost }\negthickspace \in \negthickspace\text{ costs }
\!\!,\\
\text{if } (\exists (\textbf{cost\_investment}_\text{node,tech,cost}) \land (\exists (\textit{cost\_om\_annual}_\text{cost,tech}) \lor \exists (\textit{cost\_om\_annual\_investment\_fraction}_\text{cost,tech})))\!\!:\\[2em]
\quad \frac{ \sum\limits_{\text{timestep} \in \text{timesteps}} (\textit{timestep\_resolution}_\text{timestep} \times \textit{timestep\_weights}_\text{timestep}) }{ 8760 } \times (\sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_om\_annual}_\text{cost,tech} \times \textbf{flow\_cap}_\text{node,tech,carrier}) + (\textbf{cost\_investment}_\text{node,tech,cost} \times \textit{cost\_om\_annual\_investment\_fraction}_\text{cost,tech}))\\
\end{array}
\]
foreach :
- nodes
- techs
- costs
where : cost_investment AND (cost_om_annual OR cost_om_annual_investment_fraction)
equations :
- expression : "$annualisation_weight * (\n sum(cost_om_annual * flow_cap, over=carriers)
+\n cost_investment * cost_om_annual_investment_fraction\n)"
sub_expressions :
annualisation_weight :
- expression : sum(timestep_resolution * timestep_weights, over=timesteps) / 8760
cost_operation_variable
The operating costs per timestep of a technology.
Used in
Uses
Unit : cost_per_time
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ cost }\negthickspace \in \negthickspace\text{ costs, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textit{cost\_export}_\text{cost,tech}) \lor \exists (\textit{cost\_flow\_in}_\text{cost,tech}) \lor \exists (\textit{cost\_flow\_out}_\text{cost,tech}))\!\!:\\[2em]
\quad \text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{supply})\land{}(\bigvee\limits_{\text{carrier} \in \text{carriers}} (carrier_export) \land \bigvee\limits_{\text{carrier} \in \text{carriers}} (cost_export))\!\!:\\
\qquad \textit{timestep\_weights}_\text{timestep} \times (\sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_export}_\text{cost,tech} \times \textbf{flow\_export}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_flow\_out}_\text{cost,tech} \times \textbf{flow\_out}_\text{node,tech,carrier,timestep}) + \textit{cost\_flow\_in}_\text{cost,tech} \times \textbf{source\_use}_\text{node,tech,timestep})\\[2em]
\quad \text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{supply})\land{}(\neg (\bigvee\limits_{\text{carrier} \in \text{carriers}} (carrier_export) \land \bigvee\limits_{\text{carrier} \in \text{carriers}} (cost_export)))\!\!:\\
\qquad \textit{timestep\_weights}_\text{timestep} \times (\sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_flow\_out}_\text{cost,tech} \times \textbf{flow\_out}_\text{node,tech,carrier,timestep}) + \textit{cost\_flow\_in}_\text{cost,tech} \times \textbf{source\_use}_\text{node,tech,timestep})\\[2em]
\quad \text{if } (\neg (\textit{base\_tech}_\text{tech}\mathord{=}\text{supply}))\land{}(\bigvee\limits_{\text{carrier} \in \text{carriers}} (carrier_export) \land \bigvee\limits_{\text{carrier} \in \text{carriers}} (cost_export))\!\!:\\
\qquad \textit{timestep\_weights}_\text{timestep} \times (\sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_export}_\text{cost,tech} \times \textbf{flow\_export}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_flow\_out}_\text{cost,tech} \times \textbf{flow\_out}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_flow\_in}_\text{cost,tech} \times \textbf{flow\_in}_\text{node,tech,carrier,timestep}))\\[2em]
\quad \text{if } (\neg (\textit{base\_tech}_\text{tech}\mathord{=}\text{supply}))\land{}(\neg (\bigvee\limits_{\text{carrier} \in \text{carriers}} (carrier_export) \land \bigvee\limits_{\text{carrier} \in \text{carriers}} (cost_export)))\!\!:\\
\qquad \textit{timestep\_weights}_\text{timestep} \times (\sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_flow\_out}_\text{cost,tech} \times \textbf{flow\_out}_\text{node,tech,carrier,timestep}) + \sum\limits_{\text{carrier} \in \text{carriers}} (\textit{cost\_flow\_in}_\text{cost,tech} \times \textbf{flow\_in}_\text{node,tech,carrier,timestep}))\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- costs
- timesteps
where : cost_export OR cost_flow_in OR cost_flow_out
equations :
- expression : timestep_weights * ($cost_export + $cost_flow_out + $cost_flow_in)
sub_expressions :
cost_export :
- where : any(carrier_export, over=carriers) AND any(cost_export, over=carriers)
expression : sum(cost_export * flow_export, over=carriers)
- where : NOT (any(carrier_export, over=carriers) AND any(cost_export, over=carriers))
expression : '0'
cost_flow_in :
- where : base_tech=supply
expression : cost_flow_in * source_use
- where : NOT base_tech=supply
expression : sum(cost_flow_in * flow_in, over=carriers)
cost_flow_out :
- expression : sum(cost_flow_out * flow_out, over=carriers)
flow_in_inc_eff
Inflows after taking efficiency losses into account.
Used in
Uses
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_in}_\text{node,tech,carrier,timestep}))\!\!:\\[2em]
\quad \text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission})\!\!:\\
\qquad \textbf{flow\_in}_\text{node,tech,carrier,timestep} \times \textit{flow\_in\_eff}_\text{tech} \times (\textit{flow\_in\_eff\_per\_distance}_\text{tech}^{\textit{distance}})\\[2em]
\quad \text{if } (\neg (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission}))\!\!:\\
\qquad \textbf{flow\_in}_\text{node,tech,carrier,timestep} \times \textit{flow\_in\_eff}_\text{tech}\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_in
equations :
- where : base_tech=transmission
expression : flow_in * flow_in_eff * flow_in_eff_per_distance ** distance
- where : NOT base_tech=transmission
expression : flow_in * flow_in_eff
flow_out_inc_eff
Outflows after taking efficiency losses into account.
Used in
Uses
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\text{if } (\exists (\textbf{flow\_out}_\text{node,tech,carrier,timestep}))\!\!:\\[2em]
\quad \text{if } (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission})\!\!:\\
\qquad \frac{ \textbf{flow\_out}_\text{node,tech,carrier,timestep} }{ (\textit{flow\_out\_eff}_\text{tech} \times \textit{flow\_out\_parasitic\_eff}_\text{tech} \times (\textit{flow\_out\_eff\_per\_distance}_\text{tech}^{\textit{distance}})) }\\[2em]
\quad \text{if } (\neg (\textit{base\_tech}_\text{tech}\mathord{=}\text{transmission}))\!\!:\\
\qquad \frac{ \textbf{flow\_out}_\text{node,tech,carrier,timestep} }{ (\textit{flow\_out\_eff}_\text{tech} \times \textit{flow\_out\_parasitic\_eff}_\text{tech}) }\\[2em]
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : flow_out
equations :
- where : base_tech=transmission
expression : "flow_out / (\n flow_out_eff * flow_out_parasitic_eff *\n flow_out_eff_per_distance
** distance\n)"
- where : NOT base_tech=transmission
expression : flow_out / (flow_out_eff * flow_out_parasitic_eff)
Decision Variables
area_use
The area in space utilised directly (e.g., solar PV panels) or indirectly (e.g., biofuel crops) by a technology.
Used in
Uses
Unit : area
Default : 0
async_flow_switch
Binary switch to force asynchronous outflow/consumption of technologies with both flow_in
and flow_out
defined. This ensures that a technology with carrier flow efficiencies < 100% cannot produce and consume a flow simultaneously to remove unwanted carrier from the system.
Used in
Uses
Unit : integer
Default : 0
available_flow_cap
Flow capacity that will be set to zero if the technology is not operating in a given timestep and will be set to the value of the decision variable flow_cap
otherwise. This is useful when you want to set a minimum flow capacity for any technology investment, but also want to allow the model to decide the capacity. It is expected to only be used when purchased_units_max == 1
, i.e., the purchased_units
decision variable is binary. If purchased_units_max > 1
, you may get strange results and should instead use the less flexible flow_cap_per_unit
.
Used in
Uses
Unit : power
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\in\mathbb{R}\;\!\!:\\[2em]
\text{if } (\textit{integer\_dispatch}_\text{tech}\mathord{=}\text{true} \land \exists (\textit{flow\_cap\_max}_\text{tech}) \land \neg (\exists (\textit{flow\_cap\_per\_unit}_\text{tech})))\!\!:\\[2em]
\quad 0 \leq \textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep}\\
\quad \textbf{available\_flow\_cap}_\text{node,tech,carrier,timestep} \leq inf\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : integer_dispatch=True AND flow_cap_max AND NOT flow_cap_per_unit
bounds :
min : 0
max : .inf
flow_cap
A technology's flow capacity, also known as its nominal or nameplate capacity.
Used in
Uses
Unit : power
Default : 0
flow_export
The flow of a carrier exported outside the system boundaries by a technology per timestep.
Used in
Unit : energy
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\in\mathbb{R}\;\!\!:\\[2em]
\text{if } (\exists (\text{carrier\_export}))\!\!:\\[2em]
\quad 0 \leq \textbf{flow\_export}_\text{node,tech,carrier,timestep}\\
\quad \textbf{flow\_export}_\text{node,tech,carrier,timestep} \leq inf\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : carrier_export
bounds :
min : 0
max : .inf
flow_in
The inflow to a technology per timestep, also known as the flow consumed (by storage
technologies) or the flow sent (by transmission
technologies) on a link.
Used in
Uses
Unit : energy
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\in\mathbb{R}\;\!\!:\\[2em]
\text{if } (\exists (\textit{carrier\_in}_\text{node,tech,carrier}))\!\!:\\[2em]
\quad 0 \leq \textbf{flow\_in}_\text{node,tech,carrier,timestep}\\
\quad \textbf{flow\_in}_\text{node,tech,carrier,timestep} \leq inf\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : carrier_in
bounds :
min : 0
max : .inf
flow_out
The outflow of a technology per timestep, also known as the flow discharged (from storage
technologies) or the flow received (by transmission
technologies) on a link.
Used in
Uses
Unit : energy
Default : 0
Math YAML
\[
\begin{array}{l}
\forall{}
\text{ node }\negthickspace \in \negthickspace\text{ nodes, }
\text{ tech }\negthickspace \in \negthickspace\text{ techs, }
\text{ carrier }\negthickspace \in \negthickspace\text{ carriers, }
\text{ timestep }\negthickspace \in \negthickspace\text{ timesteps }
\!\!,\\
\in\mathbb{R}\;\!\!:\\[2em]
\text{if } (\exists (\textit{carrier\_out}_\text{node,tech,carrier}))\!\!:\\[2em]
\quad 0 \leq \textbf{flow\_out}_\text{node,tech,carrier,timestep}\\
\quad \textbf{flow\_out}_\text{node,tech,carrier,timestep} \leq inf\\
\end{array}
\]
foreach :
- nodes
- techs
- carriers
- timesteps
where : carrier_out
bounds :
min : 0
max : .inf
link_flow_cap
A transmission technology's flow capacity, also known as its nominal or nameplate capacity.
Used in
Uses
Unit : power
Default : 0
operating_units
Integer number of a technology that is operating in each timestep, for any technology set to require integer capacity purchasing.
Used in
Uses
Unit : integer
Default : 0
purchased_units
Integer number of a technology that has been purchased,
for any technology set to require integer capacity purchasing.
This is used to allow installation of fixed capacity units of technologies (
if flow_cap_max
== flow_cap_min
) and/or to set a fixed cost for a technology,
irrespective of its installed capacity.
On top of a fixed technology cost,
a continuous cost for the quantity of installed capacity can still be applied.
Since technology capacity is no longer a continuous decision variable,
it is possible for these technologies to have a lower bound set on outflow/consumption
which will only be enforced in those timesteps that the technology is operating.
Otherwise, the same lower bound forces the technology to produce/consume
that minimum amount of carrier in every timestep.
Used in
Uses
Unit : integer
Default : 0
source_cap
The upper limit on a flow that can be consumed from outside the system boundaries by a supply
technology in each timestep.
Used in
Uses
Unit : power
Default : 0
source_use
The carrier flow consumed from outside the system boundaries by a supply
technology.
Used in
Uses
Unit : energy
Default : 0
storage
The carrier stored by a storage
technology in each timestep.
Used in
Uses
Unit : energy
Default : 0
storage_cap
The upper limit on a carrier that can be stored by a technology in any timestep.
Used in
Uses
Unit : energy
Default : 0
unmet_demand
Virtual source of carrier flow to ensure model feasibility. This should only be considered a debugging rather than a modelling tool as it may distort the model in other ways due to the large impact it has on the objective function value. When present in a model in which it has been requested, it indicates an inability for technologies in the model to reach a sufficient combined supply capacity to meet demand.
Used in
Unit : energy
Default : 0
unused_supply
Virtual sink of carrier flow to ensure model feasibility. This should only be considered a debugging rather than a modelling tool as it may distort the model in other ways due to the large impact it has on the objective function value. In model results, the negation of this variable is combined with unmet_demand
and presented as only one variable: unmet_demand
. When present in a model in which it has been requested, it indicates an inability for technologies in the model to reach a sufficient combined consumption capacity to meet required outflow (e.g. from renewables without the possibility of curtailment).
Used in
Unit : energy
Default : 0
Parameters
area_use_max
If set to a finite value, limits the upper bound of the area_use
decision variable to this value.
Used in
Unit : \(\text{area}\) .
Default : inf
Type : float
area_use_min
Limits the lower bound of the area_use
decision variable to this value.
Used in
Unit : \(\text{area}\) .
Default : 0
Type : float
area_use_per_flow_cap
If set, forces area_use
to follow flow_cap
with the given numerical ratio (e.g. setting to 1.5 means that area_use == 1.5 * flow_cap
).
Used in
Unit : \(\frac{\text{area}}{\text{power}}\) .
Type : float
available_area
Limits the total area that can be occupied by all technologies which have the area_use
decision variable activated.
Used in
Unit : \(\text{area}\) .
Default : inf
Type : float
base_tech
Should be the name of one of the abstract base classes, from which some initial parameter defaults will be derived and with which certain base math will be triggered.
Used in
Type : str
bigM
BigM is a large value used to define certain optimisation problems. See https://en.wikipedia.org/wiki/Big_M_method for more information. This value should be larger than the largest values that any decision variables can take, but should not be too large (i.e., do not set it greater than 3 orders of magnitude above the numeric range of the model). If too large, numerical problems may arise in the optimisation.
Used in
Default : 1000000000.0
Type : float
cap_method
One of 'continuous' (LP model) or 'integer' (integer/binary unit capacity).
Used in
Default : continuous
Type : str
carrier_in
Carrier(s) consumed by this technology. Only transmission
, conversion
, storage
, and demand
technologies can define this parameter
Used in
Type : float
carrier_out
Carrier(s) produced by this technology. Only transmission
, conversion
, storage
, and supply
technologies can define this parameter
Used in
Type : float
cost_area_use
Cost per unit area_use
.
Used in
Unit : \(\text{area}^{-1}\) .
Default : 0
Type : float
cost_depreciation_rate
Applied to "annualise" investment costs so they are comparable to variable costs. If not provided, this will be calculated using technology lifetime
and cost_interest_rate
.
Used in
Unit : fraction.
Default : 1
Type : float
cost_export
Cost per unit of flow_export
in each timestep. Usually used in the negative sense, as a subsidy.
Used in
Unit : \(\text{energy}^{-1}\) .
Default : 0
Type : float
cost_flow_cap
Cost per unit of the decision variable flow_cap
.
Used in
Unit : \(\text{power}^{-1}\) .
Default : 0
Type : float
cost_flow_cap_per_distance
Cost per unit of the decision variable flow_cap
and per unit distance of a transmission link. Applied to transmission links only.
Used in
Unit : \((\text{power}\times\text{distance})^{-1}\)
Default : 0
Type : float
cost_flow_in
Cost per unit of flow_in
in each timestep.
Used in
Unit : \(\text{energy}^{-1}\) .
Default : 0
Type : float
cost_flow_out
Cost per unit of flow_in
in each timestep.
Used in
Unit : \(\text{energy}^{-1}\) .
Default : 0
Type : float
cost_interest_rate
Used when computing levelized costs and technology depreciation_rate (relative to lifetime).
Used in
Unit : fraction
Default : 0
Type : float
cost_om_annual
Annual costs applied per unit flow_cap
. These costs are not subject to being recalculated relative to technology lifetime, only scaled to reflect the fraction of one year that the model represents (e.g., 7 days ~= 0.02 of a year).
Used in
Unit : \(\text{power}^{-1}\) .
Default : 0
Type : float
cost_om_annual_investment_fraction
Add a fraction of the sum of all investment costs except cost_om_annual
as an additional cost, to represent fixed annual O&M costs. Warning: the sum of all investment costs includes not just those associated with flow_cap
but also others like those associated with area_use
!
Used in
Unit : fraction / total investment.
Default : 0
Type : float
cost_purchase
Cost applied to the variable purchased_units
. Requires the parameter cap_method
to be integer
.
Used in
Unit : \(\text{purchased\_unit}^{-1}\)
Default : 0
Type : float
cost_purchase_per_distance
Cost applied if the binary variable purchased
is 1 or per unit of the integer variable units
. Requires the parameter cap_method
to be integer
.
Used in
Unit : \((\text{purchased\_units}\times\text{distance})^{-1}\)
Default : 0
Type : float
cost_source_cap
Cost per unit source_cap
.
Used in
Unit : \(\text{power}^{-1}\) .
Default : 0
Type : float
cost_storage_cap
Cost per unit storage_cap
, i.e., the maximum available capacity of the storage technology's "reservoir".
Used in
Unit : \(\text{energy}^{-1}\) .
Default : 0
Type : float
cyclic_storage
If true, link storage levels in the last model timestep with the first model timestep. inter_cluster_storage
custom math must be included if using time clustering and setting this to true
. This must be set to false
if using operate
mode.
Used in
Unit : boolean.
Default : True
Type : float
distance
Used for ..._per_distance
constraints. If not defined, it will be automatically derived from latitude/longitude of nodes in a link.
Used in
Default : 1.0
Type : float
export_max
If carrier_export
is defined, limit the allowed export of produced carrier for a technology.
Used in
Unit : power.
Default : inf
Type : float
flow_cap_max
Limits flow_cap
to a maximum.
Used in
Unit : power.
Default : inf
Type : float
flow_cap_max_systemwide
Limits the sum of flow_cap
over all nodes in the model to a maximum. If cap_method=integer
, this will be scaled by the number of integer units of a technology purchased.
Used in
Unit : power or \(\frac{\text{power}}{\text{unit}}\) .
Default : inf
Type : float
flow_cap_min
This acts as lower limit (lower bound) for flow_cap. If cap_method
= integer, this will be scaled by the number of integer units of a technology purchased.
Note
If cap_method
= continuous (which is set by default), then setting flow_cap_min
to any value greater than 0 forces the model to always respect that limit, which in turn forces investment into the technology.
Use this to enforce given investment plans, or to account for existing technologies that cannot be decommissioned.
An example: If cap_method
= continuous and flow_cap_min
= 100, then flow_cap has to be at least 100.
This means that going to 0 is not possible, unless you switch to cap_method
= integer (see cap_method ).
Used in
Unit : power or \(\frac{\text{power}}{\text{unit}}\) .
Default : 0
Type : float
flow_cap_min_systemwide
Limits the sum of flow_cap
over all nodes in the model to a minimum. NOTE: this will force the sum of flow_cap
to a minimum value unless cap_method
is set to integer
.
Used in
Unit : power.
Default : 0
Type : float
flow_cap_per_storage_cap_max
ratio of maximum charge/discharge (kW) for a given storage capacity (kWh).
Used in
Unit : \(\text{hour}^{-1}\)
Default : inf
Type : float
flow_cap_per_storage_cap_min
ratio of minimum charge/discharge (kW) for a given storage capacity (kWh).
Used in
Unit : \(\text{hour}^{-1}\)
Default : 0
Type : float
flow_cap_per_unit
Set the capacity of each integer unit of a technology purchased, if cap_method
is integer
.
Used in
Unit : \(\frac{\text{power}}{\text{unit}}\) .
Type : float
flow_in_eff
Conversion efficiency from source
/flow_in
(tech dependent) into the technology. Set as value between 1 (no loss) and 0 (all lost).
Used in
Unit : fraction.
Default : 1.0
Type : float
flow_in_eff_per_distance
Total link efficiency will be calculated as \(\text{flow\_in\_eff}\times{}\text{flow\_in\_eff\_per\_distance}^\text{distance}\) . Set as value between 1 (no loss) and 0 (all lost).
Used in
Default : 1.0
Type : float
flow_out_eff
Conversion efficiency from the technology to sink
/flow_out
(tech dependent). Set as value between 1 (no loss) and 0 (all lost).
Used in
Unit : fraction.
Default : 1.0
Type : float
flow_out_eff_per_distance
Total link efficiency will be calculated as \(\text{flow\_out\_eff}\times{}\text{flow\_out\_eff\_per\_distance}^\text{distance}\) . Set as value between 1 (no loss) and 0 (all lost).
Used in
Default : 1.0
Type : float
flow_out_min_relative
Set to a value between 0 and 1 to force minimum flow_out
as a fraction of the technology rated capacity. If non-zero and cap_method
is continuous
, this will force the technology to operate above its minimum value at every timestep.
Used in
Unit : fraction.
Default : 0
Type : float
flow_out_parasitic_eff
Additional losses as flow gets transferred from the plant to the carrier, e.g. due to plant parasitic consumption. Set as value between 1 (no loss) and 0 (all lost).
Used in
Unit : fraction.
Default : 1.0
Type : float
flow_ramping
limit maximum outflow / inflow / outflow - inflow (technology base class dependent) to a fraction of maximum capacity, which increases by that fraction at each timestep.
Used in
Unit : \(\frac{\text{fraction}}{\text{hour}}\) .
Default : 1.0
Type : float
force_async_flow
If True, non-zero flow_out
and flow_in
cannot both occur in the same timestep.
Used in
Default : False
Type : float
include_storage
When true, math will be triggered to allow discontinuous carrier inflow and outflows across timesteps.
Used in
Default : False
Type : float
integer_dispatch
When true, will limit per-timestep out/inflows relative to the number of units of a technology that are in operation.
Requires cap_method=integer
.
Used in
Default : False
Type : float
lifetime
Must be defined if fixed capital costs are defined. A reasonable value for many technologies is around 20-25 years.
Used in
Unit : years.
Default : inf
Type : float
objective_cost_weights
Weightings for cost classes to apply in the objective function.
Used in
Default : 1
Type : float
purchased_units_max
Limits the upper bound of units purchased if cap_method
is integer
. If set to 1
, will effectively set the purchased_units
to a binary decision variable.
Used in
Unit : integer.
Default : inf
Type : float
purchased_units_max_systemwide
sets the upper bound of the sum across all nodes of the decision variable units
for a particular technology.
Used in
Unit : integer.
Default : inf
Type : float
purchased_units_min
Limits the lower bound of units purchased if cap_method
is integer
.
Used in
Unit : integer.
Default : 0
Type : float
purchased_units_min_systemwide
sets the lower bound of the sum across all nodes of the decision variable units
for a particular technology.
Used in
Unit : integer.
Default : 0
Type : float
sink_unit
Sets the unit of Sink
to either absolute
(unit: energy
), per_area
(unit: energy/area
), or per_cap
(unit: energy/power
). per_area
uses the area_use
decision variable to scale the sink while per_cap
uses the flow_cap
decision variable.
Used in
Default : absolute
Type : str
sink_use_equals
Required amount of carrier removal from the system (e.g., electricity demand, transport distance). Unit dictated by sink_unit
.
Used in
Type : float
sink_use_max
Maximum sink use to remove a carrier from the system (e.g., electricity demand, transport distance). Unit dictated by sink_unit
.
Used in
Default : inf
Type : float
sink_use_min
Minimum sink use to remove a carrier from the system (e.g., electricity demand, transport distance). Unit dictated by sink_unit
.
Used in
Default : 0
Type : float
source_cap_equals_flow_cap
If true, the decision variables source_cap
and flow_cap
are forced to equal one another.
Used in
Default : False
Type : float
source_cap_max
Upper limit on source_cap
decision variable.
Used in
Unit : power.
Default : inf
Type : float
source_cap_min
Lower limit on source_cap
decision variable.
Used in
Unit : power.
Default : 0
Type : float
source_eff
Conversion efficiency from the technology from source
. Set as value between 1 (no loss) and 0 (all lost).
Used in
Unit : fraction.
Default : 1.0
Type : float
source_unit
Sets the unit of Source
to either absolute
(unit: energy
), per_area
(unit: energy/area
), or per_cap
(unit: energy/power
). per_area
uses the area_use
decision variable to scale the source while per_cap
uses the flow_cap
decision variable.
Used in
Default : absolute
Type : str
source_use_equals
Required amount of carrier removal from the system (e.g., biofuel, coal, rainfall, wind flow). Unit dictated by source_unit
.
Used in
Type : float
source_use_max
Maximum sink use to remove a carrier from the system (e.g., biofuel, coal, rainfall, wind flow). Unit dictated by source_unit
.
Used in
Default : inf
Type : float
source_use_min
Minimum source use to add a carrier from the system (e.g., biofuel, coal, rainfall, wind flow). Unit dictated by source_unit
.
Used in
Default : 0
Type : float
storage_cap_max
Limit upper bound of storage_cap
decision variable.
Used in
Unit : energy.
Default : inf
Type : float
storage_cap_min
Limit lower bound of storage_cap
decision variable.
Used in
Unit : energy.
Default : 0
Type : float
storage_cap_per_unit
Set the storage capacity of each integer unit of a technology purchased.
Used in
Unit : \(\frac{\text{energy}}{\text{unit}}\) .
Type : float
storage_discharge_depth
Defines the minimum level of storage state of charge, as a fraction of total storage capacity.
Used in
Unit : fraction.
Default : 0
Type : float
storage_initial
Set stored flow in device at the first timestep, as a fraction of total storage capacity.
Used in
Unit : fraction.
Default : 0
Type : float
storage_loss
Rate of storage loss per hour, used to calculate lost stored flow as (1 - storage_loss)^hours_per_timestep
.
Used in
Unit : \(\frac{\text{fraction}}{\text{hour}}\) .
Default : 0
Type : float
timestep_resolution
Used in
timestep_weights
Used in