Calliope Documentation
Release 0.6.8

Calliope contributors

Feb 07, 2022

CONTENTS

1 User guide
1.1 Introduction L e e e e e e e e e e
1.2 Download and installation L e
1.3 Buildingamodel L e
1.4 Runningamodel e e e e e e
1.5 Analysingamodel e e e e
1.6 Tutorials o e e e e e e e e e
1.7 Advanced conStraintS e e e e e e e e e e e e e e e e e e
1.8 Advanced features L. e e e e e e e e e
1.9 Configuration and defaults L e e e e e e
1.10 Troubleshooting i e e e e e e e e
1.11 Moreinfo (reference) e e e e
1.12 Development guide L

2 API documentation
2.1 APIDocumentation i i e e e e e e e e e e e e e
2.2 Index . . oL e e e e e e e e e e

3 Release history
3.1 Release History e e

4 License

Bibliography

Python Module Index

Index

119
119
126

127
127

141

143

145

147

Calliope Documentation, Release 0.6.8

v0.6.8 (Release history)

This is the documentation for version 0.6.8. See the main project website for contact details and other useful informa-
tion.

Calliope focuses on flexibility, high spatial and temporal resolution, the ability to execute many runs based on the same
base model, and a clear separation of framework (code) and model (data). Its primary focus is on planning energy
systems at scales ranging from urban districts to entire continents. In an optional operational mode it can also test
a pre-defined system under different operational conditions. Calliope’s built-in tools allow interactive exploration of
results:

A model based on Calliope consists of a collection of text files (in YAML and CSV formats) that define the technologies,
locations and resource potentials. Calliope takes these files, constructs an optimisation problem, solves it, and reports
results in the form of xarray Datasets which in turn can easily be converted into Pandas data structures, for easy analysis
with Calliope’s built-in tools or the standard Python data analysis stack.

Calliope is developed in the open on GitHub and contributions are very welcome (see the Development guide).
Key features of Calliope include:

* Model specification in an easy-to-read and machine-processable YAML format

* Generic technology definition allows modelling any mix of production, storage and consumption

* Resolved in space: define locations with individual resource potentials

* Resolved in time: read time series with arbitrary resolution

¢ Able to run on high-performance computing (HPC) clusters

* Uses a state-of-the-art Python toolchain based on Pyomo, xarray, and Pandas

* Freely available under the Apache 2.0 license

CONTENTS 1

http://www.callio.pe/
http://xarray.pydata.org/en/stable/
http://pandas.pydata.org/
https://github.com/calliope-project/calliope
https://software.sandia.gov/trac/coopr/wiki/Pyomo
http://xarray.pydata.org/
http://pandas.pydata.org/

Calliope Documentation, Release 0.6.8

2 CONTENTS

CHAPTER
ONE

USER GUIDE

1.1 Introduction

The basic process of modelling with Calliope is based on three steps:
1. Create a model from scratch or by adjusting an existing model (Building a model)
2. Run your model (Running a model)

3. Analyse and visualise model results (Analysing a model)

1.1.1 Energy system models

Energy system models allow analysts to form internally coherent scenarios of how energy is extracted, converted,
transported, and used, and how these processes might change in the future. These models have been gaining renewed
importance as methods to help navigate the climate policy-driven transformation of the energy system.

Calliope is an attempt to design an energy system model from the ground of up with specific design goals in mind
(see below). Therefore, the model approach and data format layout may be different from approaches used in other
models. The design of the nodes approach used in Calliope was influenced by the power nodes modelling framework
by [Heussen2010], but Calliope is different from traditional power system modelling tools, and does not provide features
such as power flow analysis.

Calliope was designed to address questions around the transition to renewable energy, so there are tools that are likely
to be more suitable for other types of questions. In particular, the following related energy modelling systems are
available under open source or free software licenses:

* SWITCH: A power system model focused on renewables integration, using multi-stage stochastic linear optimi-
sation, as well as hourly resource potential and demand data. Written in the commercial AMPL language and
GPL-licensed [Fripp2012].

e Temoa: An energy system model with multi-stage stochastic optimisation functionality which can be de-
ployed to computing clusters, to address parametric uncertainty. Written in Python/Pyomo and AGPL-licensed
[Hunter2013].

* OSeMOSYS: A simplified energy system model similar to the MARKAL/TIMES model families, which can
be used as a stand-alone tool or integrated in the LEAP energy model. Written in GLPK, a free subset of the
commercial AMPL language, and Apache 2.0-licensed [Howells2011].

Additional energy models that are partially or fully open can be found on the Open Energy Modelling Initiative’s wiki.

http://switch-model.org/
http://temoaproject.org/
http://www.osemosys.org/
http://www.energycommunity.org/LEAP/
http://wiki.openmod-initiative.org/wiki/Model_fact_sheets

Calliope Documentation, Release 0.6.8

1.1.2 Rationale

Calliope was designed with the following goals in mind:

Designed from the ground up to analyze energy systems with high shares of renewable energy or other variable
generation

Formulated to allow arbitrary spatial and temporal resolution, and equipped with the necessary tools to deal with
time series input data

Allow easy separation of model code and data, and modular extensibility of model code

Make models easily modifiable, archiveable and auditable (e.g. in a Git repository), by using well-defined and
human-readable text formats

Simplify the definition and deployment of large numbers of model runs to high-performance computing clusters

Able to run stand-alone from the command-line, but also provide an API for programmatic access and embedding
in larger analyses

Be a first-class citizen of the Python world (installable with conda and pip, with properly documented and tested
code that mostly conforms to PEPS)

Have a free and open-source code base under a permissive license

1.1.3 Acknowledgments

Development has been partially funded by several grants throughout throughout the years. We would particularly like
to acknowledge the following:

The Grantham Institute at Imperial College London.
the European Institute of Innovation & Technology’s Climate-KIC program.
Engineering and Physical Sciences Research Council, reference number: EP/L016095/1.

The Swiss Competence Center for Energy Research Supply of Electricity (SCCER SoE), contract number
1155002546.

Swiss Federal Office for Energy (SFOE), grant number SI/501768-01.
European Research Council TRIPOD grant, grant agreement number 715132.

The SENTINEL project of the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 837089.

1.1.4 License

Calliope is released under the Apache 2.0 license, which is a permissive open-source license much like the MIT or
BSD licenses. This means that Calliope can be incorporated in both commercial and non-commercial projects.

Copyright since 2013 Calliope contributors listed in AUTHORS

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

Chapter 1. User guide

http://www.imperial.ac.uk/grantham
http://www.climate-kic.org
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/L016095/1
http://sccer-soe.ch/
https://www.bfe.admin.ch/bfe/en/home.html
http://erc.europa.eu
https://sentinel.energy/

Calliope Documentation, Release 0.6.8

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.1.5 References

1.1.6 Citing Calliope in academic literature

Calliope is published in the Journal of Open Source Software. We encourage you to use this academic reference.

1.2 Download and installation

1.2.1 Requirements

Calliope has been tested on Linux, macOS, and Windows.
Running Calliope requires four things:
1. The Python programming language, version 3.7 or higher.
2. A number of Python add-on modules (see below for the complete list).

3. A solver: Calliope has been tested with CBC, GLPK, Gurobi, and CPLEX. Any other solver that is compatible
with Pyomo should also work.

4. The Calliope software itself.

1.2.2 Recommended installation method

The easiest way to get a working Calliope installation is to use the free conda package manager, which can install all
of the four things described above in a single step.

To get conda, download and install the “Miniconda” distribution for your operating system (using the version for
Python 3).

With Miniconda installed, you can create a new environment called "calliope" with all the necessary modules,
including the free and open source GLPK solver, by running the following command in a terminal or command-line
window

$ conda create -c conda-forge -n calliope calliope

To use Calliope, you need to activate the calliope environment each time

$ conda activate calliope

You are now ready to use Calliope together with the free and open source GLPK solver. However, we recommend to
not use this solver where possible, since it performs relatively poorly (both in solution time and stability of result).
Indeed, our example models use the free and open source CBC solver instead, but installing it on Windows requires an
extra step. Read the next section for more information on installing alternative solvers.

1.2. Download and installation 5

https://joss.theoj.org/papers/10.21105/joss.00825
https://conda.io/miniconda.html

Calliope Documentation, Release 0.6.8

1.2.3 Updating an existing installation

If following the recommended installation method above, the following command, assuming the conda environment is
active, will update Calliope to the newest version

$ conda update -c conda-forge calliope

1.2.4 Solvers

You need at least one of the solvers supported by Pyomo installed. CBC (open-source) or Gurobi (commercial) are
recommended for large problems, and have been confirmed to work with Calliope. Refer to the documentation of your
solver on how to install it.

CBC

CBC is our recommended option if you want a free and open-source solver. CBC can be installed via conda on Linux
and macOS by running “conda install -c conda-forge coincbc’. Windows binary packages are somewhat
more difficult to install, due to limited information on the CBC website, but can be found within their list of binaries.
We recommend you download the relevant binary for CBC 2.10 and add cbc.exe to a directory known to PATH (e.g.
an Anaconda environment ‘bin’ directory).

GLPK

GLPK is free and open-source, but can take too much time and/or too much memory on larger problems. If using the
recommended installation approach above, GLPK is already installed in the calliope environment. To install GLPK
manually, refer to the GLPK website.

Gurobi
Gurobi is commercial but significantly faster than CBC and GLPK, which is relevant for larger problems. It needs a
license to work, which can be obtained for free for academic use by creating an account on gurobi.com.

While Gurobi can be installed via conda (conda install -c gurobi gurobi) we recommend downloading and
installing the installer from the Gurobi website, as the conda package has repeatedly shown various issues.

After installing, log on to the Gurobi website and obtain a (free academic or paid commercial) license, then activate it
on your system via the instructions given online (using the grbgetkey command).

CPLEX

Another commercial alternative is CPLEX. IBM offer academic licenses for CPLEX. Refer to the IBM website for
details.

6 Chapter 1. User guide

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
https://www.coin-or.org/download/binary/Cbc/
https://www.coin-or.org/download/binary/Cbc/Cbc-2.10-win64-msvc15-md.zip
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://www.gurobi.com/
https://www.gurobi.com/
https://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio

Calliope Documentation, Release 0.6.8

1.2.5 Python module requirements
Refer to requirements/base.yml in the Calliope repository for a full and up-to-date listing of required third-party pack-
ages.
Some of the key packages Calliope relies on are:
* Pyomo
e Pandas
* Xarray
* Plotly

* Jupyter (optional, but highly recommended, and used for the example notebooks in the tutorials)

1.3 Building a model

In short, a Calliope model works like this: supply technologies can take a resource from outside of the modeled
system and turn it into a specific energy carrier in the system. The model specifies one or more locations along with
the technologies allowed at those locations. Transmission technologies can move energy of the same carrier from one
location to another, while conversion technologies can convert one carrier into another at the same location. Demand
technologies remove energy from the system, while storage technologies can store energy at a specific location. Putting
all of these possibilities together allows a modeller to specify as simple or as complex a model as necessary to answer
a given research question.

In more technical terms, Calliope allows a modeller to define technologies with arbitrary characteristics by “inher-
iting” basic traits from a number of included base tech groups — supply, supply_plus, demand, conversion,
conversion_plus, and transmission. These groups are described in more detail in Abstract base technology

groups.

1.3.1 Terminology

The terminology defined here is used throughout the documentation and the model code and configuration files:
* Technology: a technology that produces, consumes, converts or transports energy

* Location: a site which can contain multiple technologies and which may contain other locations for energy
balancing purposes

* Resource: a source or sink of energy that can (or must) be used by a technology to introduce into or remove
energy from the system

» Carrier: an energy carrier that groups technologies together into the same network, for example electricity
or heat.

As more generally in constrained optimisation, the following terms are also used:
» Parameter: a fixed coefficient that enters into model equations
* Variable: a variable coefficient (decision variable) that enters into model equations
 Set: an index in the algebraic formulation of the equations

» Constraint: an equality or inequality expression that constrains one or several variables

1.3. Building a model 7

https://github.com/calliope-project/calliope/blob/master/requirements/base.yml
https://www.pyomo.org/
http://pandas.pydata.org/
http://xarray.pydata.org/
https://plot.ly/
https://jupyter.org/

Calliope Documentation, Release 0.6.8

1.3.2 Files that define a model

Calliope models are defined through YAML files, which are both human-readable and computer-readable, and CSV
files (a simple tabular format) for time series data.

It makes sense to collect all files belonging to a model inside a single model directory. The layout of that directory
typically looks roughly like this (+ denotes directories, - files):

+ example_model
+ model_config
- locations.yaml
- techs.yaml
+ timeseries_data
- solar_resource.csv
- electricity_demand.csv
- model.yaml
- scenarios.yaml

In the above example, the files model.yaml, locations.yaml and techs.yaml together are the model definition.
This definition could be in one file, but it is more readable when split into multiple. We use the above layout in the
example models and in our research!

Inside the timeseries_data directory, timeseries are stored as CSV files. The location of this directory can be
specified in the model configuration, e.g. in model . yaml.

Note: The easiest way to create a new model is to use the calliope new command, which makes a copy of one of
the built-in examples models:

$ calliope new my_new_model

This creates a new directory, my_new_model, in the current working directory.

By default, calliope new uses the national-scale example model as a template. To use a different template, you can
specify the example model to use, e.g.: --template=urban_scale.

See also:

YAML configuration file format, Built-in example models, Time series data

1.3.3 Model configuration (model)

The model configuration specifies all aspects of the model to run. It is structured into several top-level headings (keys
in the YAML file): model, techs, locations, links, and run. We will discuss each of these in turn, starting with
model:

model:
name: 'lMy energy model'’
timeseries_data_path: 'timeseries_data'
reserve_margin:
power: 0
subset_time: ['2005-01-01', '2005-01-05']

Besides the model’s name (name) and the path for CSV time series data (timeseries_data_path), group constraints
can be set, like reserve_margin.

8 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

To speed up model runs, the above example specifies a time subset to run the model over only five days of time series data
(subset_time: [‘2005-01-01’, ‘2005-01-05’])- this is entirely optional. Usually, a full model will contain
at least one year of data, but subsetting time can be useful to speed up a model for testing purposes.

See also:

National scale example model, Model configuration

1.3.4 Technologies (techs)

The techs section in the model configuration specifies all of the model’s technologies. In our current example, this is
in a separate file, model_config/techs.yaml, which is imported into the main model.yaml file alongside the file
for locations described further below:

import:
- 'model_config/techs.yaml'
- 'model_config/locations.yaml'

Note: The import statement can specify a list of paths to additional files to import (the imported files, in turn, may
include further files, so arbitrary degrees of nested configurations are possible). The import statement can either give
an absolute path or a path relative to the importing file.

The following example shows the definition of a ccgt technology, i.e. a combined cycle gas turbine that delivers
electricity:

ccgt:
essentials:
name: 'Combined cycle gas turbine'
color: '#FDC97D'
parent: supply
carrier_out: power
constraints:
resource: inf
energy_eff: 0.5
energy_cap_max: 40000 # kI
energy_cap_max_systemwide: 100000 # KkiV
energy_ramping: 0.8
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per klih

Each technology must specify some essentials, most importantly a name, the abstract base technology it is inheriting
from (parent), and its energy carrier (carrier_out in the case of a supply technology). Specifying a color is
optional but useful for using the built-in visualisation tools (see Analysing a model).

The constraints section gives all constraints for the technology, such as allowed capacities, conversion efficiencies,
the life time (used in levelised cost calculations), and the resource it consumes (in the above example, the resource is
set to infinite via inf).

The costs section gives costs for the technology. Calliope uses the concept of “cost classes” to allow accounting for
more than just monetary costs. The above example specifies only the monetary cost class, but any number of other

1.3. Building a model 9

Calliope Documentation, Release 0.6.8

classes could be used, for example co2 to account for emissions. Additional cost classes can be created simply by
adding them to the definition of costs for a technology.

By default, only the monetary cost class is used in the objective function, i.e., the default objective is to minimize total
costs.

Multiple cost classes can be considered in the objective by setting the cost_class key. It must be a dictionary of cost
classes and their weights in the objective, e.g. objective_options: {‘cost_class’: {‘monetary’: 1,
‘emissions’: 0.1}}. In this example, monetary costs are summed as usual and emissions are added to this, scaled
by 0.1 (emulating a carbon price).

To use a different sense (minimize/maximize) you can set sense: objective_options: {‘cost_class’: ...,
‘sense’: ‘minimize’}.

To use a single alternative cost class, disabling the consideration of the default monetary, set the weight of the
monetary cost class to zero to stop considering it and the weight of another cost class to a non-zero value, e.g.
objective_options: {‘cost_class’: {‘monetary’: 0, ‘emissions’: 1}}.

See also:

Per-tech constraints, Per-tech costs, tutorials, built-in examples

Allowing for unmet demand

For a model to find a feasible solution, supply must always be able to meet demand. To avoid the solver failing to find
a solution, you can ensure feasibility:

run:
ensure_feasibility: true

This will create an unmet_demand decision variable in the optimisation, which can pick up any mismatch between
supply and demand, across all energy carriers. It has a very high cost associated with its use, so it will only appear
when absolutely necessary.

Note: When ensuring feasibility, you can also set a big M value (run.bigM). This is the “cost” of unmet demand. It
is possible to make model convergence very slow if bigM is set too high. default bigM is 1x10 °, but should be close
to the maximum total system cost that you can imagine. This is perhaps closer to 1x10 © for urban scale models.

1.3.5 Time series data

For parameters that vary in time, time series data can be added to a model in two ways:
* by reading in CSV files
* by passing pandas dataframes as arguments in calliope.Model called from a python session.

Reading in CSV files is possible from both the command-line tool as well running interactively with python (see
Running a model for details). However, passing dataframes as arguments in calliope.Model is possible only when
running from a python session.

10 Chapter 1. User guide

https://en.wikipedia.org/wiki/Big_M_method

Calliope Documentation, Release 0.6.8

Reading in CSV files

To read in CSV files, specify resource: file=filename.csv to pick the desired CSV file from within the config-
ured timeseries data path (model.timeseries_data_path).

By default, Calliope looks for a column in the CSV file with the same name as the location. It is also possible to specify
a column to use when setting resource per location, by giving the column name with a colon following the filename:
resource: file=filename.csv:column

For example, a simple photovoltaic (PV) tech using a time series of hour-by-hour electricity generation data might look
like this:

pv:
essentials:
name: 'Rooftop PV'
color: '#B59C2B'
parent: supply
carrier_out: power
constraints:
resource: file=pv_resource.csv
energy_cap_max: 10000 # kI

By default, Calliope expects time series data in a model to be indexed by ISO 8601 compatible time stamps
in the format YYYY-MM-DD hh:mm:ss, e.g. 2005-01-01 00:00:00. This can be changed by setting model.
timeseries_dateformat based on strftime’ directives <http://strftime.org/>" which defaults
to " '%Y-%m-%d %H:%M:%S'.

For example, the first few lines of a CSV file, called pv_resource.csv giving a resource potential for two locations
might look like this, with the first column in the file always being read as the date-time index:

,locationl,location2
2005-01-01 00:00:00,0,0
2005-01-01 01:00:00,0,11
2005-01-01 02:00:00,0,18
2005-01-01 03:00:00,0,49
2005-01-01 04:00:00,11,110
2005-01-01 05:00:00,45,300
2005-01-01 06:00:00,90,458

Reading in timeseries from pandas dataframes

When running models from python scripts or shells, it is also possible to pass timeseries directly as pandas dataframes.
This is done by specifying resource: df=tskey where tskey is the key in a dictionary containing the relevant
dataframes. For example, if the same timeseries as above is to be passed, a dataframe called pv_resource may be in
the python namespace:

pv_resource

t locationl 1location2
2005-01-01 00:00:00 0 0
2005-01-01 01:00:00 0 11
2005-01-01 02:00:00 0 18
2005-01-01 03:00:00 0 49
2005-01-01 04:00:00 11 110

(continues on next page)

1.3. Building a model 11

Calliope Documentation, Release 0.6.8

(continued from previous page)

2005-01-01 05:00:00 45 300
2005-01-01 06:00:00 90 458

To pass this timeseries into the model, create a dictionary, called timeseries_dataframes here, containing all rele-
vant timeseries identified by their tskey. In this case, this has only one key, called pv_resource:

timeseries_dataframes = {'pv_resource': pv_resource}

The keys in this dictionary must match the tskey specified in the YAML files. In this example, specifying resource:
df=pv_resource will identify the pv_resource key in timeseries_dataframes. All relevant timeseries must be
put in this dictionary. For example, if a model contains three timeseries referred to in the configuration YAML files,
called demand_1, demand_2 and pv_resource, the timeseries_dataframes dictionary may look like

timeseries_dataframes = {'demand_1': demand_1,
'demand_2"': demand_2,
'pv_resource': pv_resource}

where demand_1, demand_2 and pv_resource are dataframes of the relevant timeseries. The
timeseries_dataframes can then be called in calliope.Model:

model = calliope.Model('model.yaml', timeseries_dataframes=timeseries_dataframes)

Just like when using CSV files (see above), Calliope looks for a column in the dataframe with the same name as the
location. It is also possible to specify a column to use when setting resource per location, by giving the column name
with a colon following the filename: resource: df=tskey:column.

The time series index must be ISO 8601 compatible time stamps and can be a standard pandas DateTimelndex (see
discussion above).

Note:

* If a parameter is not explicit in time and space, it can be specified as a single value in the model definition (or,
using location-specific definitions, be made spatially explicit). This applies both to parameters that never vary
through time (for example, cost of installed capacity) and for those that may be time-varying (for example, a
technology’s available resource). However, each model must contain at least one time series.

e Only the subset of parameters listed in file_allowed in the model configuration can be loaded from file or
dataframe in this way. It is advised not to update this default list unless you are developing the core code,
since the model will likely behave unexpectedly.

* You _cannot_ have a space around the = symbol when pointing to a timeseries file or dataframe key, i.e.
resource: file = filename.csv is not valid.

¢ If running from a command line interface (see Running a model), timeseries must be read from CSV and cannot
be passed from dataframes via df=. ...

* It’s possible to mix reading in from CSVs and dataframes, by setting some config values as file=. .. and some
asdf=....

* The default value of timeseries_dataframes is None, so if you want to read all timeseries in from CSVs, you
can omit this argument. When running from command line, this is done automatically.

12 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

1.3.6 Locations and links (locations, 1links)

A model can specify any number of locations. These locations are linked together by transmission technologies. By
consuming an energy carrier in one location and outputting it in another, linked location, transmission technologies
allow resources to be drawn from the system at a different location from where they are brought into it.

The locations section specifies each location:

locations:
regionl:

coordinates: {lat: 40, lon: -2}

techs:
unmet_demand_power:
demand_power:
ccgt:

constraints:
energy_cap_max: 30000

Locations can optionally specify coordinates (used in visualisation or to compute distance between them) and must
specify techs allowed at that location. As seen in the example above, each allowed tech must be listed, and can
optionally specify additional location-specific parameters (constraints or costs). If given, location-specific parameters
supersede any group constraints a technology defines in the techs section for that location.

The 1inks section specifies possible transmission links between locations in the form locationl,location2:

links:
regionl,region2:
techs:
ac_transmission:

constraints:
energy_cap_max: 10000

costs.monetary:
energy_cap: 100

In the above example, an high-voltage AC transmission line is specified to connect regionl with region2. For this
to work, a transmission technology called ac_transmission must have previously been defined in the model’s
techs section. There, it can be given group constraints or costs. As in the case of locations, the 1inks section can
specify per-link parameters (constraints or costs) that supersede any model-wide parameters.

The modeller can also specify a distance for each link, and use per-distance constraints and costs for transmission
technologies.

See also:
Per-tech constraints, Per-tech costs.
1.3.7 Run configuration (run)

The only required setting in the run configuration is the solver to use:

run:
solver: cbc
mode: plan

the most important parts of the run section are solver and mode. A model can run in planning mode (plan), op-
erational mode (operate), or SPORES mode (spores). In planning mode, capacities are determined by the model,

1.3. Building a model 13

Calliope Documentation, Release 0.6.8

whereas in operational mode, capacities are fixed and the system is operated with a receding horizon control algorithm.
In SPORES mode, the model is first run in planning mode, then run N number of times to find alternative system
configurations with similar monetary cost, but maximally different choice of technology capacity and location.

Possible options for solver include glpk, gurobi, cplex, and cbc. The interface to these solvers is done through the
Pyomo library. Any solver compatible with Pyomo should work with Calliope.

For solvers with which Pyomo provides more than one way to interface, the additional solver_io option can be used.
In the case of Gurobi, for example, it is usually fastest to use the direct Python interface:

run:
solver: gurobi
solver_io: python

Note: The opposite is currently true for CPLEX, which runs faster with the default solver_io.

Further optional settings, including debug settings, can be specified in the run configuration.
See also:

Run configuration, Troubleshooting, Specifying custom solver options, documentation on operational mode, documen-
tation on SPORES mode.

1.3.8 Scenarios and overrides

To make it easier to run a given model multiple times with slightly changed settings or constraints, for example, varying
the cost of a key technology, it is possible to define and apply scenarios and overrides. “Overrides” are blocks of YAML
that specify configurations that expand or override parts of the base model. “Scenarios” are combinations of any number
of such overrides. Both are specified at the top level of the model configuration, as in this example model.yaml file:

scenarios:
high_cost_2005: ["high_cost", "year2005"]
high_cost_2006: ["high_cost", "year2006"]

overrides:
high_cost:
techs.onshore_wind.costs.monetary.energy_cap: 2000
year2005:
model.subset_time: ['2005-01-01', '2005-12-31"']
year2006:

model.subset_time: ['2006-01-01', '2006-12-31"']

model:

run:

Each override is given by a name (e.g. high_cost) and any number of model settings — anything in the model configu-
ration can be overridden by an override. In the above example, one override defines higher costs for an onshore_wind
tech while the two other overrides specify different time subsets, so would run an otherwise identical model over two
different periods of time series data.

14 Chapter 1. User guide

https://software.sandia.gov/downloads/pub/pyomo/PyomoInstallGuide.html#Solvers

Calliope Documentation, Release 0.6.8

One or several overrides can be applied when running a model, as described in Running a model. Overrides can also
be combined into scenarios to make applying them at run-time easier. Scenarios consist of a name and a list of override
names which together form that scenario.

Scenarios and overrides can be used to generate scripts that run a single Calliope model many times, either sequentially,
or in parallel on a high-performance cluster (see Generating scripts to run a model many times).

Note: Overrides can also import other files. This can be useful if many overrides are defined which share large parts
of model configuration, such as different levels of interconnection between model zones. See Importing other YAML
files in overrides for details.

See also:

Generating scripts to run a model many times, Importing other YAML files in overrides

1.4 Running a model

There are essentially three ways to run a Calliope model:
1. With the calliope run command-line tool.

2. By programmatically creating and running a model from within other Python code, or in an interactive Python
session.

3. By generating and then executing scripts with the calliope generate_runs command-line tool, which is
primarily designed for running many scenarios on a high-performance cluster.

1.4.1 Running with the command-line tool

We can easily run a model after creating it (see Building a model), saving results to a single NetCDF file for further
processing

$ calliope run testmodel/model.yaml --save_netcdf=results.nc

The calliope run command takes the following options:

e --save_netcdf={filename.nc}: Save complete model, including results, to the given NetCDF file. This is
the recommended way to save model input and output data into a single file, as it preserves all data fully, and
allows later reconstruction of the Calliope model for further analysis.

* --save_csv={directory name}: Save results as a set of CSV files to the given directory. This can be handy
if the modeler needs results in a simple text-based format for further processing with a tool like Microsoft Excel.

e --save_plots={filename.html}: Save interactive plots to the given HTML file (see Analysing a model for
further details on the plotting functionality).

e --debug: Runin debug mode, which prints more internal information, and is useful when troubleshooting failing
models.

* --scenario={scenario} and --override_dict={yaml_string}: Specify a scenario, or one or several
overrides, to apply to the model, or apply specific overrides from a YAML string (see below for more information)

e --help: Show all available options.

Multiple options can be specified, for example, saving NetCDF, CSV, and HTML plots simultaneously

1.4. Running a model 15

Calliope Documentation, Release 0.6.8

$ calliope run testmodel/model.yaml --save_netcdf=results.nc --save_
-,csv=outputs --save_plots=plots.html

Warning: Unlike in versions prior to 0.6.0, the command-line tool in Calliope 0.6.0 and upward does not save
results by default — the modeller must specify one of the -save options.

Applying a scenario or override

The --scenario can be used in three different ways:
* It can be given the name of a scenario defined in the model configuration, as in --scenario=my_scenario

eIt can be given the name of a single override defined in the model configuration, as in
--scenario=my_override

e It can be given a comma-separated string of several overrides defined in the model configuration, as in
--scenario=my_override_1,my_override_2

In the latter two cases, the given override(s) is used to implicitly create a “scenario” on-the-fly when running the model.
This allows quick experimentation with different overrides without explicitly defining a scenario combining them.

Assuming we have specified an override called milp in our model configuration, we can apply it to our model with

$ calliope run testmodel/model.yaml --scenario=milp --save_netcdf=results.nc

Note that if both a scenario and an override with the same name, such as milp in the above example, exist, Calliope
will raise an error, as it will not be clear which one the user wishes to apply.

It is also possible to use the —override_dict option to pass a YAML string that will be applied after anything applied
through --scenario

$ calliope run testmodel/model.yaml --override_dict="{'model.subset_time': [
~'2005-01-01", '2005-01-31"]}" --save_netcdf=results.nc

See also:
Analysing a model, Scenarios and overrides
1.4.2 Running interactively with Python

The most basic way to run a model programmatically from within a Python interpreter is to create a Model instance
with a given model.yaml configuration file, and then call its run () method:

import calliope
model = calliope.Model('path/to/model.yaml")
model.run()

Note: If config is not specified (i.e. model = Model()), an error is raised. See Built-in example models for
information on instantiating a simple example model without specifying a custom model configuration.

Other ways to load a model interactively are:

16 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

* Passing an AttrDict or standard Python dictionary to the Model constructor, with the same nested format as
the YAML model configuration (top-level keys: model, run, locations, techs).

* Loading a previously saved model from a NetCDF file with model = calliope.read_netcdf(‘path/to/
saved_model.nc’). This can either be a pre-processed model saved before its run method was called, which
will include input data only, or a completely solved model, which will include input and result data.

After instantiating the Model object, and before calling the run() method, it is possible to manually inspect and adjust
the configuration of the model. The pre-processed inputs are all held in the xarray Dataset model . inputs.

After the model has been solved, an xarray Dataset containing results (model . results) can be accessed. At this point,
the model can be saved with either to_csv () or to_netcdf (), which saves all inputs and results, and is equivalent to
the corresponding --save options of the command-line tool.

See also:

An example of interactive running in a Python session, which also demonstrates some of the analysis possibilities after
running a model, is given in the furorials. You can download and run the embedded notebooks on your own machine
(if both Calliope and the Jupyter Notebook are installed).

Scenarios and overrides

There are two ways to override a base model when running interactively, analogously to the use of the command-line
tool (see Applying a scenario or override above):

1. By setting the scenario argument, e.g.:

model = calliope.Model('model.yaml', scenario='milp')

2. By passing the override_dict argument, which is a Python dictionary, an AttrDict, or a YAML string of over-
rides:

model = calliope.Model(
'model.yaml"',
override_dict={'run.solver': 'gurobi'}

Note: Both scenario and override_dict can be defined at once. They will be applied in order, such that scenarios are
applied first, followed by dictionary overrides. As such, the override_dict can be used to override scenarios.

Tracking progress

When running Calliope in the command line, logging of model pre-processing and solving occurs automatically.
Interactively, for example in a Jupyter notebook, you can enable verbose logging by setting the log level using
calliope.set_log_verbosity(level) immediately after importing the Calliope package. By default, calliope.
set_log_verbosity() also sets the log level for the backend model to DEBUG, which turns on output of solver out-
put. This can be disabled by calliope.set_log_verbosity(level, include_solver_output=False). Possi-
ble log levels are (from least to most verbose):

1. CRITICAL: only show critical errors.
2. ERROR: only show errors.
3. WARNING: show errors and warnings (default level).

1.4. Running a model 17

Calliope Documentation, Release 0.6.8

4. INFO: show errors, warnings, and informative messages. Calliope uses the INFO level to show a message at
each stage of pre-processing, sending the model to the solver, and post-processing, including timestamps.

5. DEBUG: SOLVER logging, with heavily verbose logging of a number of function outputs. Only for use when
troubleshooting failing runs or developing new functionality in Calliope.

1.4.3 Generating scripts for many model runs

Scripts to simplify the creation and execution of a large number of Calliope model runs are generated with the calliope
generate_runs command-line tool. More detail on this is available in Generating scripts to run a model many times.

1.4.4 Improving solution times

Large models will take time to solve. The easiest is often to just let a model run on a remote device (another computer,
or a high performance computing cluster) and forget about it until it is done. However, if you need results now, there
are ways to improve solution time.

Details on strategies to improve solution times are given in Troubleshooting.

1.4.5 Debugging failing runs

What will typically go wrong, in order of decreasing likelihood:

* The model is improperly defined or missing data. Calliope will attempt to diagnose some common errors and
raise an appropriate error message.

* The model is consistent and properly defined but infeasible. Calliope will be able to construct the model and
pass it on to the solver, but the solver (after a potentially long time) will abort with a message stating that the
model is infeasible.

* There is a bug in Calliope causing the model to crash either before being passed to the solver, or after the solver
has completed and when results are passed back to Calliope.

Calliope provides help in diagnosing all of these model issues. For details, see Troubleshooting.

1.5 Analysing a model

Calliope inputs and results are designed for easy handling. Whatever software you prefer to use for data processing,
either the NetCDF or CSV output options should provide a path to importing your Calliope results. If you prefer to not
worry about writing your own scripts, then we have that covered too! The built-in plotting functions in plot are built
on Plotly’s interactive visualisation tools to bring your data to life.

1.5.1 Accessing model data and results

A model which solved successfully has two primary Datasets with data of interest:
* model.inputs: contains all input data, such as renewable resource capacity factors
* model.results: contains all results data, such as dispatch decisions and installed capacities

In both of these, variables are indexed over concatenated sets of locations and technologies, over a dimension we call
loc_techs. For example, if a technology called boiler only exists in location X1 and not in locations X2 or X3,
then it will have a single entry in the loc_techs dimension called X1: :boiler. For parameters which also consider

18 Chapter 1. User guide

https://plot.ly/

Calliope Documentation, Release 0.6.8

different energy carriers, we use a loc_tech_carrier dimension, such that we would have, in the case of the prior
boiler example, X1: :boiler: :heat.

This concatenated set formulation is memory-efficient but cumbersome to deal with, so the model.
get_formatted_array(name_of_variable) function can be used to retrieve a DataArray indexed over separate
dimensions (any of techs, locs, carriers, costs, timesteps, depending on the desired variable).

Note: On saving to CSV (see the command-line interface documentation), all variables are saved to a single file each,
which are always indexed over all dimensions rather than just the concatenated dimensions.

1.5.2 Visualising results

In an interactive Python session, there are four primary visualisation functions: capacity, timeseries,
transmission, and summary. To gain access to result visualisation without the need to interact with Python, the
summary plot can also be accessed from the command line interface (see below).

Refer to the API documentation for the analysis module for an overview of available analysis functionality.

Refer to the rutorials for some basic analysis techniques.

Plotting time series

The following example shows a timeseries plot of the built-in urban scale example model:

In Python, we get this function by callingmodel .plot.timeseries(). Itincludes all relevant timeseries information,
from both inputs and results. We can force it to only have particular results in the dropdown menu:

Only inputs or only results
model .plot.timeseries(array="inputs"')
model .plot.timeseries(array="results')

Only consumed resource
model .plot.timeseries(array='resource_con')

Only consumed resource and 'power' carrier flow
model .plot.timeseries(array=['power', 'resource_con'])

The data used to build the plots can also be subset and ordered by using the subset argument. This uses xarray’s ‘loc’
indexing functionality to access subsets of data:

Only show regionl data (rather than the default, which is a sum of all locations)
model .plot.timeseries(subset={'locs': ['regionl']l})

Only show a subset of technologies
model .plot.timeseries(subset={"'techs': ['ccgt', 'csp'lP

Assuming our model has three techs, 'ccgt', 'csp', and 'battery’,
specifying ‘subset’ lets us order them in the stacked barchart
model .plot.timeseries(subset={"'techs': ['ccgt', 'battery', 'csp']l})

When aggregating model timesteps with clustering methods, the timeseries plots are adjusted accordingly (example
from the built-in time_clustering example model):

1.5. Analysing a model 19

http://xarray.pydata.org/en/stable/indexing.html
http://xarray.pydata.org/en/stable/indexing.html

Calliope Documentation, Release 0.6.8

See also:

API documentation for the analysis module

Plotting capacities

The following example shows a capacity plot of the built-in urban scale example model:

Functionality is similar to timeseries, this time called by model .plot.capacity(). Here we show capacity limits set
at input and chosen capacities at output. Choosing dropdowns and subsetting works in the same way as for timeseries
plots

Plotting transmission

The following example shows a transmission plot of the built-in urban scale example model:

By calling model.plot.transmission() you will see installed links, their capacities (on hover), and the locations
of the nodes. This functionality only works if you have physically pinpointed your locations using the coordinates
key for your location.

The above plot uses Mapbox to overlay our transmission plot on Openstreetmap. By creating an account at Mapbox
and acquiring a Mapbox access token, you can also create similar visualisations by giving the token to the plotting
function: model.plot.transmission(mapbox_access_token=’"your token here’).

Without the token, the plot will fall back on simple country-level outlines. In this urban scale example, the background
is thus just grey (zoom out to see the UK!):

Note: If the coordinates were in x and y, not lat and lon, the transmission trace would be given on a cartesian plot.

Plotting flows

The following example shows an energy flow plot of the built-in urban scale example model:

By calling model.plot. flows () you will see a plot similar to rransmission. However, you can see carrier production
at each node and along links, at every timestep (controlled by moving a slider). This functionality only works if you
have physically pinpointed your locations using the coordinates key for your location. It is possible to look at only
a subset of the timesteps in the model using the timestep_index_subset argument, or to show only every X timestep
(where X is an integer) using the timestep_cycle argument.

Note: If the timestep dimension is particularly large in your model, you will find this visualisation to be slow. Time
subsetting is recommended for such a case.

If you cannot see the carrier production for a technology on hovering, it is likely masked by another technology at the
same location or on the same link. Hide the masking technology to get the hover info for the technology below.

20 Chapter 1. User guide

https://www.mapbox.com/

Calliope Documentation, Release 0.6.8

Summary plots

If you want all the data in one place, you can run model .plot.summary(to_file="path/to/file.html’), which
will build a HTML file of all the interactive plots (maintaining the interactivity) and save it to ‘path/to/file.html’. This
HTML file can be opened in a web browser to show all the plots. This funcionality is made available in the command
line interface by using the command --save_plots=filename.html when running the model.

See an example of such a HTML plot here.
See also:

Running with the command-line tool

Saving publication-quality SVG figures

On calling any of the three primary plotting functions, you can also set to_file=path/to/file.svg for a high
quality vector graphic to be saved. This file can be prepared for publication in programs like Inkscape.

Note: For similar results in the command line interface, you’ll currently need to save your model to netcdf
(--save_netcdf={filename.nc}) then load it into a Calliope Model object in Python. Once there, you can use
the above functions to get your SVGs.

1.5.3 Reading solutions

Calliope provides functionality to read a previously-saved model from a single NetCDF file:

solved_model = calliope.read_netcdf('my_saved_model.nc")

In the above example, the model’s input data will be available under solved_model . inputs, while the results (if the
model had previously been solved) are available under solved_model.results.

Both of these are xarray.Datasets and can be further processed with Python.
See also:

The xarray documentation should be consulted for further information on dealing with Datasets. Calliope’s NetCDF
files follow the CF conventions and can easily be processed with any other tool that can deal with NetCDF.

1.6 Tutorials

The tutorials are based on the built-in example models, they explain the key steps necessary to set up and run simple
models. Refer to the other parts of the documentation for more detailed information on configuring and running more
complex models. The built-in examples are simple on purpose, to show the key components of a Calliope model with
which models of arbitrary complexity can be built.

The first tutorial builds a model for part of a national grid, exhibiting the following Calliope functionality:
 Use of supply, supply_plus, demand, storage and transmission technologies
* Nested locations
e Multiple cost types

The second tutorial builds a model for part of a district network, exhibiting the following Calliope functionality:

1.6. Tutorials 21

../_static/plot_summary.html
https://inkscape.org/en/
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/
http://cfconventions.org/

Calliope Documentation, Release 0.6.8

* Use of supply, demand, conversion, conversion_plus, and transmission technologies
* Use of multiple energy carriers
* Revenue generation, by carrier export

The third tutorial extends the second tutorial, exhibiting binary and integer decision variable functionality (extended
an LP model to a MILP model)

1.6.1 Tutorial 1: national scale
This example consists of two possible power supply technologies, a power demand at two locations, the possibility for

battery storage at one of the locations, and a transmission technology linking the two. The diagram below gives an
overview:

Fig. 1: Overview of the built-in national-scale example model

Supply-side technologies

The example model defines two power supply technologies.

The first is ccgt (combined-cycle gas turbine), which serves as an example of a simple technology with an infinite
resource. Its only constraints are the cost of built capacity (energy_cap) and a constraint on its maximum built
capacity.

Fig. 2: The layout of a supply node, in this case ccgt, which has an infinite resource, a carrier conversion efficiency
(energyeyys), and a constraint on its maximum built energy.q, (which puts an upper limit on energyproq)-

The definition of this technology in the example model’s configuration looks as follows:

ccgt:
essentials:
name: 'Combined cycle gas turbine'
color: '"#E37A72'
parent: supply
carrier_out: power
constraints:
resource: inf
energy_eff: 0.5
energy_cap_max: 40000 # kI
energy_cap_max_systemwide: 100000 # KkiV
energy_ramping: 0.8
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per kith

There are a few things to note. First, ccgt defines essential information: a name, a color (given as an HTML color code,
for later visualisation), its parent, supply, and its carrier_out, power. It has set itself up as a power supply technology.

22 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

This is followed by the definition of constraints and costs (the only cost class used is monetary, but this is where other
“costs”, such as emissions, could be defined).

Note: There are technically no restrictions on the units used in model definitions. Usually, the units will be kW and
kWh, alongside a currency like USD for costs. It is the responsibility of the modeler to ensure that units are correct and
consistent. Some of the analysis functionality in the postprocess module assumes that kW and kWh are used when
drawing figure and axis labels, but apart from that, there is nothing preventing the use of other units.

The second technology is csp (concentrating solar power), and serves as an example of a complex supply_plus tech-
nology making use of:

« a finite resource based on time series data
* built-in storage

e plant-internal losses (parasitic_eff)

Fig. 3: The layout of a more complex node, in this case csp, which makes use of most node-level functionality available.

This definition in the example model’s configuration is more verbose:

csp:
essentials:
name: 'Concentrating solar power'
color: '#F9CF22'
parent: supply_plus
carrier_out: power
constraints:
storage_cap_max: 614033
energy_cap_per_storage_cap_max: 1
storage_loss: 0.002
resource: file=csp_resource.csv
resource_unit: energy_per_area
energy_eff: 0.4
parasitic_eff: 0.9
resource_area_max: inf
energy_cap_max: 10000
lifetime: 25
costs:
monetary:
interest_rate: 0.10
storage_cap: 50
resource_area: 200
resource_cap: 200
energy_cap: 1000
om_prod: 0.002

Again, csp has the definitions for name, color, parent, and carrier_out. Its constraints are more numerous: it defines
a maximum storage capacity (storage_cap_max), an hourly storage loss rate (storage_loss), then specifies that
its resource should be read from a file (more on that below). It also defines a carrier conversion efficiency of 0.4 and
a parasitic efficiency of 0.9 (i.e., an internal loss of 0.1). Finally, the resource collector area and the installed carrier
conversion capacity are constrained to a maximum.

The costs are more numerous as well, and include monetary costs for all relevant components along the conversion from

1.6. Tutorials 23

Calliope Documentation, Release 0.6.8

resource to carrier (power): storage capacity, resource collector area, resource conversion capacity, energy conversion
capacity, and variable operational and maintenance costs. Finally, it also overrides the default value for the monetary
interest rate.

Storage technologies

The second location allows a limited amount of battery storage to be deployed to better balance the system. This
technology is defined as follows:

Fig. 4: A storage node with an energyeys and storage;oss.

battery:
essentials:
name: 'Battery storage'
color: '#3B61E3'
parent: storage
carrier: power
constraints:
energy_cap_max: 1000 # kW
storage_cap_max: inf
energy_cap_per_storage_cap_max: 4
energy_eff: 0.95 # 0.95 * 0.95 = 0.9025 round trip efficiency
storage_loss: 0 # No loss over time assumed
lifetime: 25
costs:
monetary:
interest_rate: 0.10
storage_cap: 200 # USD per kWh storage capacity

The contraints give a maximum installed generation capacity for battery storage together with a maximum ratio of
energy capacity to storage capacity (energy_cap_per_storage_cap_max) of 4, which in turn limits the storage
capacity. The ratio is the charge/discharge rate / storage capacity (a.k.a the battery reservoir). In the case of a storage
technology, energy_eff applies twice: on charging and discharging. In addition, storage technologies can lose stored
energy over time — in this case, we set this loss to zero.

Other technologies

Three more technologies are needed for a simple model. First, a definition of power demand:

Fig. 5: A simple demand node.

demand_power:
essentials:
name: 'Power demand'’
color: '#072486'
parent: demand
carrier: power

Power demand is a technology like any other. We will associate an actual demand time series with the demand tech-
nology later.

24 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

What remains to set up is a simple transmission technology. Transmission technologies (like conversion technologies)
look different than other nodes, as they link the carrier at one location to the carrier at another (or, in the case of
conversion, one carrier to another at the same location):

Fig. 6: A simple transmission node with an energye.y .

ac_transmission:
essentials:
name: 'AC power transmission'
color: '#8465A9'
parent: transmission
carrier: power
constraints:
energy_eff: 0.85
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 200
om_prod: 0.002

free_transmission:
essentials:
name: 'Local power transmission'
color: '#6783E3"’
parent: transmission
carrier: power
constraints:
energy_cap_max: inf
energy_eff: 1.0
costs:
monetary:
om_prod: 0

ac_transmission has an efficiency of 0.85, so a loss during transmission of 0.15, as well as some cost definitions.

free_transmission allows local power transmission from any of the csp facilities to the nearest location. As the
name suggests, it applies no cost or efficiency losses to this transmission.

Locations

In order to translate the model requirements shown in this section’s introduction into a model definition, five locations
are used: region-1, region-2, regionl-1, regionl-2, and regionl-3.

The technologies are set up in these locations as follows:

Fig. 7: Locations and their technologies in the example model

Let’s now look at the first location definition:

1.6. Tutorials 25

Calliope Documentation, Release 0.6.8

regionl:
coordinates: {lat: 40, lon: -2}
techs:
demand_power:
constraints:
resource: file=demand-1.csv:demand
ccgt:
constraints:
energy_cap_max: 30000 # increased to ensure no unmet_demand in first.
—timestep

There are several things to note here:

» The location specifies a dictionary of technologies that it allows (techs), with each key of the dictionary referring
to the name of technologies defined in our techs.yaml file. Note that technologies listed here must have been
defined elsewhere in the model configuration.

* It also overrides some options for both demand_power and ccgt. For the latter, it simply sets a location-specific
maximum capacity constraint. For demand_power, the options set here are related to reading the demand time
series from a CSV file. CSV is a simple text-based format that stores tables by comma-separated rows. Note
that we did not define any resource option in the definition of the demand_power technology. Instead, this is
done directly via a location-specific override. For this location, the file demand-1. csv is loaded and the column
demand is taken (the text after the colon). If no column is specified, Calliope will assume that the column name
matches the location name regionl-1. Note that in Calliope, a supply is positive and a demand is negative, so
the stored CSV data will be negative.

* Coordinates are defined by latitude (1at) and longitude (1on), which will be used to calculate distance of trans-
mission lines (unless we specify otherwise later on) and for location-based visualisation.

The remaining location definitions look like this:

region2:
coordinates: {lat: 40, lon: -8}
techs:
demand_power:
constraints:
resource: file=demand-2.csv:demand
battery:

regionl-1.coordinates: {lat: 41, lon: -2}
regionl-2.coordinates: {lat: 39, lon: -1}
regionl-3.coordinates: {lat: 39, lon: -2}

regionl-1, regionl-2, regionl-3:
techs:
csp:

region2 is very similar to regionl, except that it does not allow the ccgt technology. The three regionl- locations
are defined together, except for their location coordinates, i.e. they each get the exact same configuration. They allow
only the csp technology, this allows us to model three possible sites for CSP plants.

For transmission technologies, the model also needs to know which locations can be linked, and this is set up in the
model configuration as follows:

regionl,region2:
techs:

(continues on next page)

26 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

ac_transmission:
constraints:
energy_cap_max: 10000
regionl,regionl-1:
techs:
free_transmission:
regionl,regionl-2:
techs:
free_transmission:
regionl,regionl-3:
techs:
free_transmission:

We are able to override constraints for transmission technologies at this point, such as the maximum capacity of the
specific regionl to region2 link shown here.

Running the model

We now take you through running the model in a Jupyter notebook, which you can view here. After clicking on that
link, you can also download and run the notebook yourself (you will need to have Calliope installed).

1.6.2 Tutorial 2: urban scale

This example consists of two possible sources of electricity, one possible source of heat, and one possible source of
simultaneous heat and electricity. There are three locations, each describing a building, with transmission links between
them. The diagram below gives an overview:

Fig. 8: Overview of the built-in urban-scale example model

Supply technologies

This example model defines three supply technologies.

The first two are supply_gas and supply_grid_power, referring to the supply of gas (natural gas) and
electricity, respectively, from the national distribution system. These ‘inifinitely’ available national commodities
can become energy carriers in the system, with the cost of their purchase being considered at supply, not conversion.

Fig. 9: The layout of a simple supply technology, in this case supply_gas, which has a resource input and a carrier
output. A carrier conversion efficiency (energyess) can also be applied (although isn’t considered for our supply
technologies in this problem).

The definition of these technologies in the example model’s configuration looks as follows:

supply_grid_power:
essentials:
name: 'National grid import'
color: '#CS5ABE3'
parent: supply

(continues on next page)

1.6. Tutorials 27

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.6.8/_static/notebooks/national_scale.ipynb

Calliope Documentation, Release 0.6.8

(continued from previous page)

carrier: electricity
constraints:

resource: inf

energy_cap_max: 2000

lifetime: 25

costs:
monetary:
interest_rate: 0.10
energy_cap: 15
om_con: 0.1 # 10p/kWh electricity price #ppt
supply_gas:
essentials:

name: 'Natural gas import'
color: '#C98AAD'
parent: supply
carrier: gas
constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 1
om_con: 0.025 # 2.5p/klih gas price #ppt

The final supply technology is pv (solar photovoltaic power), which serves as an inflexible supply technology. It
has a time-dependant resource availablity, loaded from file, a maximum area over which it can capture its resource
(resource_area_max) and a requirement that all available resource must be used (force_resource: True). This
emulates the reality of solar technologies: once installed, their production matches the availability of solar energy.

The efficiency of the DC to AC inverter (which occurs after conversion from resource to energy carrier) is considered
in parasitic_eff and the resource_area_per_energy_cap gives a link between the installed area of solar panels
to the installed capacity of those panels (i.e. kWp).

In most cases, domestic PV panels are able to export excess energy to the national grid. We allow this here by specifying
an export_carrier. Revenue for export will be considered on a per-location basis.

The definition of this technology in the example model’s configuration looks as follows:

pv:
essentials:
name: 'Solar photovoltaic power'
color: '#F9D956'
parent: supply_power_plus
constraints:
export_carrier: electricity
resource: file=pv_resource.csv:per_area # Already accounts for panel efficiency.,
- klWih/m2. Source: Renewables.ninja Solar PV Power - Version: 1.1 - License: https://
—screativecommons.org/licenses/by-nc/4.0/ - Reference: https://doi.org/10.1016/j.energy.
- 2016.08.060
resource_unit: energy_per_area
parasitic_eff: 0.85 # inverter losses

(continues on next page)

28 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

energy_cap_max: 250
resource_area_max: 1500
force_resource: true
resource_area_per_energy_cap: 7 # 7/m2 of panels needed to fit 1kWp of panels
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 1350

Finally, the parent of the PV technology is not supply_plus, but rather supply_power_plus. We use this to show the
possibility of an intermediate technology group, which provides the information on the energy carrier (electricity)
and the ultimate abstract base technology (supply_plus):

tech_groups:
supply_power_plus:
essentials:
parent: supply_plus
carrier: electricity

Intermediate technology groups allow us to avoid repetition of technology information, be it in essentials,
constraints, or costs, by linking multiple technologies to the same intermediate group.

Conversion technologies

The example model defines two conversion technologies.

The first is boiler (natural gas boiler), which serves as an example of a simple conversion technology with one input
carrier and one output carrier. Its only constraints are the cost of built capacity (costs.monetary.energy_cap),
a constraint on its maximum built capacity (constraints.energy_cap.max), and an energy conversion efficiency
(energy_eff).

Fig. 10: The layout of a simple node, in this case boiler, which has one carrier input, one carrier output, a carrier
conversion efficiency (energy.ss), and a constraint on its maximum built energycq, (Which puts an upper limit on
Carrierprod)-

The definition of this technology in the example model’s configuration looks as follows:

boiler:

essentials:
name: 'Natural gas boiler'
color: '#8E2999'
parent: conversion
carrier_out: heat
carrier_in: gas

constraints:
energy_cap_max: 600
energy_eff: 0.85
lifetime: 25

costs:
monetary:

(continues on next page)

1.6. Tutorials 29

Calliope Documentation, Release 0.6.8

(continued from previous page)

interest_rate: 0.10
om_con: 0.004 # .4p/klih

There are a few things to note. First, boiler defines a name, a color (given as an HTML color code), and a stack_weight.
These are used by the built-in analysis tools when analyzing model results. Second, it specifies its parent, conversion,
its carrier_in gas, and its carrier_out heat, thus setting itself up as a gas to heat conversion technology. This is followed
by the definition of constraints and costs (the only cost class used is monetary, but this is where other “costs”, such as
emissions, could be defined).

The second technology is chp (combined heat and power), and serves as an example of a possible conversion_plus
technology making use of two output carriers.

Fig. 11: The layout of a more complex node, in this case chp, which makes use of multiple output carriers.

This definition in the example model’s configuration is more verbose:

chp:

essentials:
name: 'Combined heat and power'
color: '#E4AB97'
parent: conversion_plus
primary_carrier_out: electricity
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat

constraints:
export_carrier: electricity
energy_cap_max: 1500
energy_eff: 0.405
carrier_ratios.carrier_out_2.heat: 0.8
lifetime: 25

costs:
monetary:
interest_rate: 0.10
energy_cap: 750
om_prod: 0.004 # .4p/kWWh for 4500 operating hours/year
export: file=export_power.csv
See also:

The conversion_plus tech

Again, chp has the definitions for name, color, parent, and carrier_in/out. It now has an additional carrier
(carrier_out_2) defined in its essential information, allowing a second carrier to be produced at the same time
as the first carrier (carrier_out). The carrier ratio constraint tells us the ratio of carrier_out_2 to carrier_out that we
can achieve, in this case 0.8 units of heat are produced every time a unit of electricity is produced. to produce these
units of energy, gas is consumed at a rate of carrier_prod(carrier_out) / energy_eff, so gas consumption is
only a function of power output.

As with the pv, the chp an export eletricity. The revenue gained from this export is given in the file export_power.
csv, in which negative values are given per time step.

30 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

Demand technologies

Electricity and heat demand are defined here:

demand_electricity:
essentials:
name: 'Electrical demand'
color: '#072486'
parent: demand
carrier: electricity

demand_heat:
essentials:
name: 'Heat demand'
color: '#660507'
parent: demand
carrier: heat

Electricity and heat demand are technologies like any other. We will associate an actual demand time series with each
demand technology later.

Transmission technologies

In this district, electricity and heat can be distributed between locations. Gas is made available in each location without
consideration of transmission.

Fig. 12: A simple transmission node with an energyey .

power_lines:

essentials:
name: 'Electrical power distribution'
color: '#6783E3"’
parent: transmission
carrier: electricity

constraints:
energy_cap_max: 2000
energy_eff: 0.98
lifetime: 25

costs:
monetary:
interest_rate: 0.10
energy_cap_per_distance: 0.01
heat_pipes:
essentials:

name: 'District heat distribution'
color: '#823739'
parent: transmission
carrier: heat
constraints:
energy_cap_max: 2000

(continues on next page)

1.6. Tutorials 31

Calliope Documentation, Release 0.6.8

(continued from previous page)

energy_eff_per_distance: 0.975
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap_per_distance: 0.3

power_lines has an efficiency of 0.95, so a loss during transmission of 0.05. heat_pipes has a loss rate per unit dis-
tance of 2.5%/unit distance (or energy_eff per_distance of 97.5%). Over the distance between the two locations
of 0.5km (0.5 units of distance), this translates to 2.5%-% = 1.58% loss rate.

Locations

In order to translate the model requirements shown in this section’s introduction into a model definition, four locations
are used: X1, X2, X3, and N1.

The technologies are set up in these locations as follows:

Fig. 13: Locations and their technologies in the urban-scale example model

Let’s now look at the first location definition:

X1:
techs:
chp:
pv:
supply_grid_power:
costs.monetary.energy_cap: 100 # cost of transformers
supply_gas:
demand_electricity:
constraints.resource: file=demand_power.csv
demand_heat:
constraints.resource: file=demand_heat.csv
available_area: 500
coordinates: {x: 2, y: 7}

There are several things to note here:

» The location specifies a dictionary of technologies that it allows (techs), with each key of the dictionary referring
to the name of technologies defined in our techs.yaml file. Note that technologies listed here must have been
defined elsewhere in the model configuration.

* It also overrides some options for both demand_electricity, demand_heat, and supply_grid_power. For
the latter, it simply sets a location-specific cost. For demands, the options set here are related to reading the
demand time series from a CSV file. CSV is a simple text-based format that stores tables by comma-separated
rows. Note that we did not define any resource option in the definition of these demands. Instead, this is done
directly via a location-specific override. For this location, the files demand_heat .csv and demand_power.csv
are loaded. As no column is specified (see national scale example model) Calliope will assume that the column
name matches the location name X1. Note that in Calliope, a supply is positive and a demand is negative, so the
stored CSV data will be negative.

» Coordinates are defined by cartesian coordinates x and y, which will be used to calculate distance of transmission
lines (unless we specify otherwise later on) and for location-based visualisation. These coordinates are abstract,

32 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

unlike latitude and longitude, and can be used when we don’t know (or care) about the geographical location of
our problem.

* An available_area is defined, which will limit the maximum area of all resource_area technologies to the
e.g. roof space available at our location. In this case, we just have pv, but the case where solar thermal panels
compete with photovoltaic panels for space, this would the sum of the two to the available area.

The remaining location definitions look like this:

X2:
techs:
boiler:
costs.monetary.energy_cap: 43.1 # different boiler costs
pv:
costs.monetary:
om_prod: -0.0203 # revenue for just producing electricity
export: -0.0491 # FIT return for PV export
supply_gas:
demand_electricity:
constraints.resource: file=demand_power.csv
demand_heat:
constraints.resource: file=demand_heat.csv
available_area: 1300
coordinates: {x: 8, y: 7}
X3:
techs:
boiler:
costs.monetary.energy_cap: 78 # different boiler costs
pv:
constraints:
energy_cap_max: 50 # changing tariff structure below 50kW
costs.monetary:
om_annual: -80.5 # reimbursement per kWip from FIT
supply_gas:

demand_electricity:
constraints.resource: file=demand_power.csv
demand_heat:
constraints.resource: file=demand_heat.csv
available_area: 900
coordinates: {x: 5, y: 3}

X2 and X3 are very similar to X1, except that they do not connect to the national electricity grid, nor do they contain
the chp technology. Specific pv cost structures are also given, emulating e.g. commercial vs. domestic feed-in tariffs.

N1 differs to the others by virtue of containing no technologies. It acts as a branching station for the heat network,
allowing connections to one or both of X2 and X3 without double counting the pipeline from X1 to N1. Its definition
look like this:

N1: # location for branching heat transmission network
coordinates: {x: 5, y: 7}

For transmission technologies, the model also needs to know which locations can be linked, and this is set up in the
model configuration as follows:

1.6. Tutorials 33

Calliope Documentation, Release 0.6.8

X1,X2:
techs:
power_lines:
distance: 10
X1,X3:
techs:
power_lines:
X1,N1:
techs:
heat_pipes:
N1,X2:
techs:
heat_pipes:
N1,X3:
techs:
heat_pipes:

The distance measure for the power line is larger than the straight line distance given by the coordinates of X1 and X2,
so we can provide more information on non-direct routes for our distribution system. These distances will override any
automatic straight-line distances calculated by coordinates.

Revenue by export

Defined for both PV and CHP, there is the option to accrue revenue in the system by exporting electricity. This export
is considered as a removal of the energy carrier electricity from the system, in exchange for negative cost (i.e.
revenue). To allow this, carrier_export: electricity has been given under both technology definitions and an
export value given under costs.

The revenue from PV export varies depending on location, emulating the different feed-in tariff structures in the UK for
commercial and domestic properties. In domestic properties, the revenue is generated by simply having the installation
(per kW installed capacity), as export is not metered. Export is metered in commercial properties, thus revenue is
generated directly from export (per kWh exported). The revenue generated by CHP depends on the electricity grid
wholesale price per kWh, being 80% of that. These revenue possibilities are reflected in the technologies” and locations’
definitions.

Running the model

We now take you through running the model in a Jupyter notebook, which you can view here. After clicking on that
link, you can also download and run the notebook yourself (you will need to have Calliope installed).

1.6.3 Tutorial 3: Mixed Integer Linear Programming

This example is based on the urban scale example model, but with an override. In the model’s scenarios.yaml
file overrides are defined which trigger binary and integer decision variables, creating a MILP model, rather than a
conventional LP model.

34 Chapter 1. User guide

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.6.8/_static/notebooks/urban_scale.ipynb

Calliope Documentation, Release 0.6.8

Units

The capacity of a technology is usually a continuous decision variable, which can be within the range of 0 and
energy_cap_max (the maximum capacity of a technology). In this model, we introduce a unit limit on the CHP
instead:

chp:
constraints:
units_max: 4
energy_cap_per_unit: 300
energy_cap_min_use: 0.2
costs:

monetary:
energy_cap: 700
purchase: 40000

A unit maximum allows a discrete, integer number of CHP to be purchased, each having a capacity of
energy_cap_per_unit. Any of energy_cap_max, energy_cap_min, or energy_cap_equals are now ignored,
in favour of units_max, units_min, or units_equals. A useful feature unlocked by introducing this is the abil-
ity to set a minimum operating capacity which is only enforced when the technology is operating. In the LP model,
energy_cap_min_use would force the technology to operate at least at that proportion of its maximum capacity at
each time step. In this model, the newly introduced energy_cap_min_use of 0.2 will ensure that the output of the
CHP is 20% of its maximum capacity in any time step in which it has a non-zero output.

Purchase cost

The boiler does not have a unit limit, it still utilises the continuous variable for its capacity. However, we have introduced
a purchase cost:

boiler:
costs:
monetary:
energy_cap: 35
purchase: 2000

By introducing this, the boiler now has a binary decision variable associated with it, which is 1 if the boiler has a
non-zero energy_cap (i.e. the optimisation results in investment in a boiler) and 0 if the capacity is 0. The purchase
cost is applied to the binary result, providing a fixed cost on purchase of the technology, irrespective of the technology
size. In physical terms, this may be associated with the cost of pipework, land purchase, etc. The purchase cost is also
imposed on the CHP, which is applied to the number of integer CHP units in which the solver chooses to invest.

MILP functionality can be easily applied, but convergence is slower as a result of integer/binary variables. It is recom-
mended to use a commercial solver (e.g. Gurobi, CPLEX) if you wish to utilise these variables outside this example
model.

1.6. Tutorials 35

Calliope Documentation, Release 0.6.8

Asynchronous energy production/consumption

The heat pipes which distribute thermal energy in the network may be prone to dissipating heat in an unphysical way. L.e.
given that they have distribution losses associated with them, in any given timestep, a link could produce and consume
energy in the same timestep, losing energy to the atmosphere in both instances, but having a net energy transmission
of zero. This allows e.g. a CHP facility to overproduce heat to produce more cheap electricity, and have some way of
dumping that heat. The asynchronous_prod_con binary constraint ensures this phenomenon is avoided:

heat_pipes:
constraints:
force_asynchronous_prod_con: true

Now, only one of carrier_prod and carrier_con can be non-zero in a given timestep. This constraint can also be
applied to storage technologies, to similarly control charge/discharge.

Running the model

We now take you through running the model in a Jupyter notebook, which you can view here. After clicking on that
link, you can also download and run the notebook yourself (you will need to have Calliope installed).

1.7 Advanced constraints

This section, as the title suggests, contains more info and more details, and in particular, information on some of
Calliope’s more advanced functionality.

We suggest you read the Building a model, Running a model and Analysing a model sections first.

1.7.1 The supply_plus tech

The plus tech groups offer complex functionality, for technologies which cannot be described easily. Supply_plus
allows a supply technology with internal storage of resource before conversion to the carrier happens. This could be
emulated with dummy carriers and a combination of supply, storage, and conversion techs, but the supply_plus tech
allows for concise and mathematically more efficient formulation.

Fig. 14: Representation of the supply_plus technology

An example use of supply_plus is to define a concentrating solar power (CSP) technology which consumes a solar
resource, has built-in thermal storage, and produces electricity. See the national-scale built-in example model for an
application of this.

See the listing of supply_plus configuration in the abstract base tech group definitions for the additional constraints that
are possible.

Warning: When analysing results from supply_plus, care must be taken to correctly account for the losses
along the transformation from resource to carrier. For example, charging of storage from the resource may have a
resource_eff-associated loss with it, while discharging storage to produce the carrier may have a different loss
resulting from a combination of energy_eff and parasitic_eff. Such intermediate conversion losses need to
be kept in mind when comparing discharge from storage with carrier_prod in the same time step.

36 Chapter 1. User guide

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.6.8/_static/notebooks/milp.ipynb

Calliope Documentation, Release 0.6.8

1.7.2 The conversion_plus tech

The plus tech groups offer complex functionality, for technologies which cannot be described -easily.
Conversion_plus allows several carriers to be converted to several other carriers. Describing such a technology
requires that the user understands the carrier_ratios, i.e. the interactions and relative efficiencies of carrier inputs
and outputs.

Fig. 15: Representation of the most complex conversion_plus technology available

The conversion_plus technologies allows for up to three carrier groups as inputs (carrier_in, carrier_in_2
and carrier_in_3) and up to three carrier groups as outputs (carrier_out, carrier_out_2 and carrier_out_3).
A carrier group can contain any number of carriers.

The efficiency of a conversion_plus tech dictates how many units of carrier_out are produced per unit of consumed
carrier_in. A unit of carrier_out_2 and of carrier_out_3 is produced each time a unit of carrier_out is produced.
Similarly, a unit of Carrier_in_2 and of carrier_in_3 is consumed each time a unit of carrier_in is consumed. Within
a given carrier group (e.g. carrier_out_2) any number of carriers can meet this one unit. The carrier_ratio of any
carrier compares it either to the production of one unit of carrier_out or to the consumption of one unit of carrier_in.

In this section, we give examples of a few conversion_plus technologies alongside the YAML formulation required
to construct them:

Combined heat and power

A combined heat and power plant produces electricity, in this case from natural gas. Waste heat that is produced can be
used to meet nearby heat demand (e.g. via district heating network). For every unit of electricity produced, 0.8 units
of heat are always produced. This is analogous to the heat to power ratio (HTP). Here, the HTP is 0.8.

chp:

essentials:
name: Combined heat and power
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat
primary_carrier_out: electricity

constraints:
energy_eff: 0.45
energy_cap_max: 100
carrier_ratios.carrier_out_2.heat: 0.8

Air source heat pump

The output energy from the heat pump can be either heat or cooling, simulating a heat pump that can be useful in
both summer and winter. For each unit of electricity input, one unit of output is produced. Within this one unit of
carrier_out, there can be a combination of heat and cooling. Heat is produced with a COP of 5, cooling with a
COP of 3. If only heat were produced in a timestep, 5 units of it would be available in carrier_out; similarly 3 units for
cooling. In another timestep, both heat and cooling might be produced with e.g. 2.5 units heat + 1.5 units cooling = 1
unit of carrier_out.

1.7. Advanced constraints 37

Calliope Documentation, Release 0.6.8

ahp:
essentials:
name: Air source heat pump
carrier_in: electricity
carrier_out: [heat, cooling]
primary_carrier_out: heat

constraints:
energy_eff: 1
energy_cap_max: 100
carrier_ratios:
carrier_out:
heat: 5
cooling: 3

Combined cooling, heat and power (CCHP)

A CCHP plant can use generated heat to produce cooling via an absorption chiller. As with the CHP plant, electricity
is produced at 45% efficiency. For every unit of electricity produced, 1 unit of carrier_out_2 must be produced,
which can be a combination of 0.8 units of heat and 0.5 units of cooling. Some example ways in which the model could
decide to operate this unit in a given time step are:

* 1 unit of gas (carrier_in) is converted to 0.45 units of electricity (carrier_out) and (0.8 * 0.45) units of heat
(carrier_out_2)

* 1 unit of gas is converted to 0.45 units electricity and (0.5 * 0.45) units of cooling

* 1 unit of gas is converted to 0.45 units electricity, (0.3 * 0.8 * 0.45) units of heat, and (0.7 * 0.5 * 0.45) units of

cooling
cchp:

essentials:
name: Combined cooling, heat and power
carrier_in: gas
carrier_out: electricity
carrier_out_2: [heat, cooling]
primary_carrier_out: electricity

constraints:

energy_eff: 0.45
energy_cap_max: 100
carrier_ratios.carrier_out_2: {heat: 0.8, cooling: 0.5}

38 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

Advanced gas turbine

This technology can choose to burn methane (CH:sub:4) or send hydrogen (H:sub:2) through a fuel cell to produce
electricity. One unit of carrier_in can be met by any combination of methane and hydrogen. If all methane, 0.5 units
of carrier_out would be produced for 1 unit of carrier_in (energy_eff). If all hydrogen, 0.25 units of carrier_out would
be produced for the same amount of carrier_in (energy_eff * hydrogen carrier ratio).

gt:
essentials:
name: Advanced gas turbine
carrier_in: [methane, hydrogen]
carrier_out: electricity

constraints:
energy_eff: 0.5
energy_cap_max: 100
carrier_ratios:
carrier_in: {methane: 1, hydrogen: 0.5}

Complex fictional technology

There are few instances where using the full capacity of a conversion_plus tech is physically possible. Here, we have a
fictional technology that combines fossil fuels with biomass/waste to produce heat, cooling, and electricity. Different
‘grades’ of heat can be produced, the higher grades having an alternative. High grade heat (high_T_heat) is produced
and can be used directly, or used to produce electricity (via e.g. organic rankine cycle). carrier_out is thus a
combination of these two. carrier_out_2 can be 0.3 units mid grade heat for every unit carrier_out or 0.2 units cooling.
Finally, 0.1 units carrier_out_3, low grade heat, is produced for every unit of carrier_out.

complex:
essentials:

name: Complex fictional technology
carrier_in: [coal, gas, o0ill]
carrier_in_2: [biomass, waste]
carrier_out: [high_T_heat, electricity]
carrier_out_2: [mid_T_heat, cooling]
carrier_out_3: low_T_heat
primary_carrier_out: electricity

constraints:

energy_eff: 1

energy_cap_max: 100

carrier_ratios:
carrier_in: {coal: 1.2, gas: 1, oil: 1.6}
carrier_in_2: {biomass: 1, waste: 1.25}
carrier_out: {high_T_heat: 0.8, electricity: 0.6}
carrier_out_2: {mid_T_heat: 0.3, cooling: 0.2}
carrier_out_3.low_T_heat: 0.15

A primary_carrier_out must be defined when there are multiple carrier_out values defined, similarly
primary_carrier_in can be defined for carrier_in. primary_carriers can be defined as any carrier in a tech-

1.7. Advanced constraints 39

Calliope Documentation, Release 0.6.8

nology’s input/output carriers (including secondary and tertiary carriers). The chosen output carrier will be the one to
which production costs are applied (reciprocally, input carrier for consumption costs).

Note: Conversion_plus technologies can also export any one of their output carriers, by specifying that carrier as
carrier_export.

1.7.3 Resource area constraints

Several optional constraints can be used to specify area-related restrictions on technology use.

To make use of these constraints, one should set resource_unit: energy_per_area for the given technologies.
This scales the available resource at a given location for a given technology with its resource_area decision variable.

The following related settings are available:

* resource_area_equals, resource_area_max, resource_area_min: Set uppper or lower bounds on re-
source_area or force it to a specific value

e resource_area_per_energy_cap: False by default, but if set to true, it forces resource_area to fol-
low energy_cap with the given numerical ratio (e.g. setting to 1.5 means that resource_area == 1.5 *
energy_cap)

By default, resource_area_max is infinite and resource_area_min is O (zero).

1.7.4 Group constraints

Group constraints are applied to named sets of locations and techs, called “constraint groups”, specified through a
top-level group_constraints key (sitting alongside other top-level keys like model and run).

The below example shows two such named groups. The first does not specify a subset of techs or locations and is
thus applied across the entire model. In the example, we use cost_max with the co2 cost class to specify a model-
wide emissions limit (assuming the technologies in the model have co2 costs associated with them). We also use the
demand_share_min constraint to force wind and PV to supply at least 40% of electricity demand in Germany, which
is modelled as two locations (North and South):

run:

model:

group_constraints:
A constraint group to apply a systemwide CO2 cap
systemwide_co2_cap:
cost_max:
co2: 100000
A constraint group to enforce renewable generation in Germany
renewable_minimum_share_in_germany:
techs: ['wind', 'pv']
locs: ['germany_north', 'germany_south']
demand_share_min:
electricity: 0.4

40 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

When specifying group constraints, a named group must give at least one constraint, but can list an arbitrary amount
of constraints, and optionally give a subset of techs and locations:

group_constraints:
group_name:
techs: [] # Optional, can be left out if empty
locs: [1 # Optional, can be left out if empty
Any number of constraints can be specified for the given group
constraint_1:
constraint_2:

The below table lists all available group constraints.

Note that when computing the share for demand_share constraints, only demand technologies are counted, and that
when computing the share for supply_share constraints, supply and supply_plus technologies are counted.

Table 1: Group constraints

Constraint | Dimensions Description

demand_share_mirarriers Minimum share of carrier demand met from a set of technologies across a
set of locations, on average over the entire model period.

demand_share_macarriers Maximum share of carrier demand met from a set of technologies across a
set of locations, on average over the entire model period.

demand_share_equatiers Share of carrier demand met from a set of technologies across a set of loca-

tions, on average over the entire model period.
demand_share_pecartiamestep_min Minimum share of carrier demand met from a set of technologies across a
set of locations, in each individual timestep.
demand_share_pecartiomestep_max Maximum share of carrier demand met from a set of technologies across a
set of locations, in each individual timestep.
demand_share_pecarticmestep_equalkare of carrier demand met from a set of technologies across a set of loca-
tions, in each individual timestep.
demand_share_pecarticmestep_de¢iFiion the per-timestep share of carrier demand met from a set of technolo-
gies across a set of locations into a model decision variable.

carrier_prod_sheareianin Minimum share of carrier production met from a set of technologies across
a set of locations, on average over the entire model period.

carrier_prod_sheareianax Maximum share of carrier production met from a set of technologies across
a set of locations, on average over the entire model period.

carrier_prod_shemejcesual s Share of carrier production met from a set of technologies across a set of

locations, on average over the entire model period.
carrier_prod_sheareigrer_timesteblimimum share of carrier production met from a set of technologies across
a set of locations, in each individual timestep.
carrier_prod_sheareigrer_timesteblardmum share of carrier production met from a set of technologies across
a set of locations, in each individual timestep.
carrier_prod_sheaeigper_timestephamqguaflsarrier production met from a set of technologies across a set of
locations, in each individual timestep.

net_import_shareamiors Minimum share of demand met from transmission technologies into a set of
locations, on average over the entire model period. All transmission tech-
nologies of the chosen carrier are added automatically and technologies must
thus not be defined explicitly.

net_import_shdareamixs Maximum share of demand met from transmission technologies into a set
of locations, on average over the entire model period. All transmission tech-
nologies of the chosen carrier are added automatically and technologies must
thus not be defined explicitly.

continues on next page

1.7. Advanced constraints 41

Calliope Documentation, Release 0.6.8

Table 1 - continued from previous page

Constraint

Dimensions

Description

net_import_shdrearempusls

Share of demand met from transmission technologies into a set of locations,
on average over the entire model. All transmission technologies of the cho-
sen carrier are added automatically and technologies must thus not be de-
fined explicitly. period.

carrier_prod_miparriers

Minimum absolute sum of supplied energy (carrier_prod) over all timesteps
for a set of technologies across a set of locations.

carrier_prod_macarriers

Maximum absolute sum of supplied energy (carrier_prod) over all timesteps
for a set of technologies across a set of locations.

carrier_prod_e

qualiers

Exact absolute sum of supplied energy (carrier_prod) over all timesteps for
a set of technologies across a set of locations.

carrier_con_mi

ncarriers

Minimum sum of consumed energy (carrier_con) over all timesteps for a
set of conversion/demand technologies across a set of locations. Values are
negative and are relative to zero, i.e. a minimum value of -1 means that
consumed energy must be < -1

carrier_con_mg

xcarriers

Maximum sum of consumed energy (carrier_con) over all timesteps for a
set of conversion/demand technologies across a set of locations. Values are
negative and are relative to zero, i.e. a maximum value of -1 means that
consumed energy must be > -1

carrier_con_equedrsiers

Exact sum of consumed energy (carrier_con) over all timesteps for a set of
conversion/demand technologies across a set of locations. Values are nega-
tive.

cost_max costs Maximum total cost from a set of technologies across a set of locations.

cost_min costs Minimum total cost from a set of technologies across a set of locations.

cost_equals costs Total cost from a set of technologies across a set of locations must equal
given value.

cost_var_max | costs Maximum variable cost from a set of technologies across a set of locations.

cost_var_min | costs Minimum variable cost from a set of technologies across a set of locations.

cost_var_equalscosts

Variable cost from a set of technologies across a set of locations must equal
given value.

cost_investmentcamx

Maximum investment cost from a set of technologies across a set of loca-
tions.

cost_investmentcasin

Minimum investment cost from a set of technologies across a set of locations.

cost_investmentcexsials

Investment cost from a set of technologies across a set of locations must
equal given value.

energy_cap_shdre_min

Minimum share of installed capacity from a set of technologies across a set
of locations.

energy_cap_shdre_max Maximum share of installed capacity from a set of technologies across a set
of locations.
energy_cap_shdre_equals Exact share of installed capacity from a set of technologies across a set of

locations.

energy_cap_mirn —

Minimum installed capacity from a set of technologies across a set of loca-
tions.

energy_cap_max —

Maximum installed capacity from a set of technologies across a set of loca-
tions.

energy_cap_equals

Exact installed capacity from a set of technologies across a set of locations.

resource_area.|

lmin

Minimum resource area used by a set of technologies across a set of loca-
tions.

resource_area.|

max

Maximum resource area used by a set of technologies across a set of loca-
tions.

resource_area_equals

Exact resource area used by a set of technologies across a set of locations.

continues on next page

42

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

Table 1 - continued from previous page

Constraint Dimensions Description

storage_cap_min— Minimum installed storage capacity from a set of technologies across a set
of locations.

storage_cap_max— Maximum installed storage capacity from a set of technologies across a set
of locations.

storage_cap_equals Exact installed storage capacity from a set of technologies across a set of
locations.

For specifics of the mathematical formulation of the available group constraints, see Group constraints in the mathe-
matical formulation section.

See also:

The built-in national-scale example’s scenarios.yaml shows two example uses of group constraints: limiting shared
capacity with energy_cap_max and enforcing a minimum shared power generation with carrier_prod_share_min.

demand_share_per_timestep_decision

The demand_share_per_timestep_decision constraintis a special case amongst group constraints, as it introduces
anew decision variable, allowing the model to set the share of demand met by each technology given in the constraint’s
group, across the locations given in the group. The fraction set in the constraint is the fraction of total demand over
which the model has control. Setting this to anything else than 1.0 only makes sense when a subset of technologies is
targeted by the constraint.

It can also be set to . inf to permit Calliope to decide on the fraction of total demand to cover by the constraint. This
can be necessary in cases where there are sources of carrier consumption other than demand in the locations covered
by the group constraint: when using conversion techs or when there are losses from storage and transmission, as the
share may then be higher than 1, leading to an infeasible model if it is forced to 1. 0.

This constraint can be useful in large-scale models where individual technologies should not fluctuate in their relative
share from time step to time step, for example, when modelling the relative share of heating demand from different
heating technologies.

Note: In some model setups, numerical issues in the solving process can cause model infeasibility due to this group
constraint. It may therefore be necessary to ‘relax’ this constraint, such that the requirement for a technology to have
a specific demand share in each timestep is relax by a few percent. To enfore this relaxation, you can set the run
configuration option run.relax_constraint.demand_share_per_timestep_decision_main_constraint to
something other than ® (default). E.g. a value of 0.01 will set a 1% relaxation (Lhs == rhs ->1hs >= 0.99 * rhs
& lhs <= 1.01 * rhs).

Warning: It is easy to create an infeasible model by setting several conflicting group constraints, in particular
when demand_share_per_timestep_decision isinvolved. Make sure you think through the implications when
setting up these constraints!

1.7. Advanced constraints 43

Calliope Documentation, Release 0.6.8

1.7.5 Per-distance constraints and costs

Transmission technologies can additionally specify per-distance efficiency (loss) with energy_eff_per_distance
and per-distance costs with energy_cap_per_distance:

techs:
my_transmission_tech:
essentials:
constraints:

"efficiency" (1-loss) per unit of distance
energy_eff_per_distance: 0.99
costs:
monetary:
cost per unit of distance
energy_cap_per_distance: 10

The distance is specified in transmission links:

links:
locationl,location2:
my_transmission_tech:
distance: 500
constraints:
energy_cap.max: 10000

If no distance is given, but the locations have been given lat and lon coordinates, Calliope will compute distances
automatically (based on the length of a straight line connecting the locations).

1.7.6 One-way transmission links

Transmission links are bidirectional by default. To force unidirectionality for a given technology along a given link,
you have to set the one_way constraint in the constraint definition of that technology, for that link:

links:
locationl,location2:
transmission-tech:
constraints:
one_way: true

This will only allow transmission from locationl to location2. To swap the direction, the link name must be
inverted, i.e. location2,locationl.

1.7.7 Cyclic storage

With storage and supply_plus techs, it is possible to link the storage at either end of the timeseries, using cyclic
storage. This allows the user to better represent multiple years by just modelling one year. Cyclic storage is activated by
default (to deactivate: run.cyclic_storage: false). As aresult, a technology’s initial stored energy at a given
location will be equal to its stored energy at the end of the model’s last timestep.

For example, for a model running over a full year at hourly resolution, the initial storage at Jan Ist 00:00:00 will
be forced equal to the storage at the end of the timestep Dec 31st 23:00:00. By setting storage_initial for a

44 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

technology, it is also possible to fix the value in the last timestep. For instance, with run.cyclic_storage: true
and a storage_initial of zero, the stored energy must be zero by the end of the time horizon.

Without cyclic storage in place (as was the case prior to v0.6.2), the storage tech can have any amount of stored energy
by the end of the timeseries. This may prove useful in some cases, but has less physical meaning than assuming cyclic
storage.

Note: Cyclic storage also functions when time clustering, if allowing storage to be tracked between clusters (see 7ime
resolution adjustment). However, it cannot be used in operate run mode.

1.7.8 Revenue and export

It is possible to specify revenues for technologies simply by setting a negative cost value. For example, to consider a
feed-in tariff for PV generation, it could be given a negative operational cost equal to the real operational cost minus
the level of feed-in tariff received.

Export is an extension of this, allowing an energy carrier to be removed from the system without meeting demand.
This is analogous to e.g. domestic PV technologies being able to export excess electricity to the national grid. A cost
(or negative cost: revenue) can then be applied to export.

Note: Negative costs can be applied to capacity costs, but the user must an ensure a capacity limit has been set.
Otherwise, optimisation will be unbounded.

1.7.9 The group_share constraint (deprecated)

Warning: group_share is deprecated as of v0.6.4 and will be removed in v0.7.0. Use the new, more flexible
functionality Group constraints to replace it.

The group_share constraint can be used to force groups of technologies to fulfill certain shares of supply or capacity.

For example, assuming a model containing a csp and a cold_fusion power generation technology, we could force at
least 85% of power generation in the model to come from these two technologies with the following constraint definition
in the model settings:

model:
group_share:
csp,cold_fusion:
carrier_prod_min:
power: 0.85

Possible group_share constraints with carrier-specific settings are:
e carrier_prod_min
e carrier_prod_max
e carrier_prod_equals
Possible group_share constraints with carrier-independent settings are:

e energy_cap_min

1.7. Advanced constraints 45

Calliope Documentation, Release 0.6.8

* energy_cap_max
* energy_cap_equals

These can be implemented as, for example, to force at most 20% of energy_cap to come from the two listed tech-
nologies:

model:
group_share:
csp,cold_fusion:
energy_cap_max: 0.20

1.7.10 Binary and mixed-integer constraints

Calliope models are purely linear by default. However, several constraints can turn a model into a binary or mixed-
integer model. Because solving problems with binary or integer variables takes considerably longer than solving purely
linear models, it usually makes sense to carefully consider whether the research question really necessitates going
beyond a purely linear model.

By applying a purchase cost to a technology, that technology will have a binary variable associated with it, describing
whether or not it has been “purchased”.

By applying units.max, units.min, or units.equals to a technology, that technology will have a integer variable
associated with it, describing how many of that technology have been “purchased”. If a purchase cost has been applied
to this same technology, the purchasing cost will be applied per unit.

Warning: Integer and binary variables are a recent addition to Calliope and may not cover all edge cases as
intended. Please raise an issue on GitHub if you see unexpected behavior.

See also:

Tutorial 3: Mixed Integer Linear Programming

Asynchronous energy production/consumption
The asynchronous_prod_con binary constraint ensures that only one of carrier_prod and carrier_con can be
non-zero in a given timestep.

This constraint can be applied to storage or transmission technologies. This example shows use with a heat transmission
technology:

heat_pipes:
constraints:
force_asynchronous_prod_con: true

In the above example, heat pipes which distribute thermal energy in the network may be prone to dissipating heat in
an unphysical way. L.e. given that they have distribution losses associated with them, in any given timestep, a link
could produce and consume energy in the same timestep, losing energy to the atmosphere in both instances, but having
a net energy transmission of zero. This might allow e.g. a CHP facility to overproduce heat to produce more cheap
electricity, and have some way of dumping that heat. Enabling the asynchronous_prod_con constraint ensures that
this does not happen.

46 Chapter 1. User guide

https://github.com/calliope-project/calliope/issues

Calliope Documentation, Release 0.6.8

1.7.11 User-defined custom constraints

It is possible to pass custom constraints to the Pyomo backend, using the backend interface. This requires an under-
standing of the structure of Pyomo constraints. As an example, the following code reproduces the constraint which
limits the maximum carrier consumption to less than or equal to the technology capacity:

model = calliope.Model(...)
model.run() # or ‘model.run(build_only=True)" if you don't want the model to be.
—optimised before adding the new constraint

constraint_name = 'max_capacity_90_constraint'
constraint_sets ['loc_techs_supply']

def max_capacity_90_constraint_rule(backend_model, loc_tech):

return backend_model.energy_cap[loc_tech] <= (
backend_model.energy_cap_max[loc_tech] * 0.9

)

Add the constraint
model .backend.add_constraint(constraint_name, constraint_sets, max_capacity_90_
—,constraint_rule)

Rerun the model with new constraint.
new_model = model.backend.rerun() # ‘new_model' is a calliope model *without* a backend,.
it is only useful for saving the results to file

Note:

* We like the convention that constraint names end with ‘constraint’ and constraint rules have the same text, with
an appended °_rule’, but you are not required to follow this convention to have a working constraint.

e model.run(force_rerun=True) will not implement the new constraint, model .backend.rerun() is re-
quired. If you run model.run(force_rerun=True), the backend model will be rebuilt, killing any changes
you’ve made.

1.8 Advanced features

Once you’re comfortable with building, running, and analysing one of the built-in example models, you may want to
explore Calliope’s advanced functionality. With these features, you will be able to build and run complex models in no
time.

1.8. Advanced features 47

Calliope Documentation, Release 0.6.8

1.8.1 Time resolution adjustment

Models have a default timestep length (defined implicitly by the timesteps of the model’s time series data). This default
resolution can be adjusted over parts of the dataset by specifying time resolution adjustment in the model configuration,
for example:

model:
time:
function: resample
function_options: {'resolution': '6H'}

In the above example, this would resample all time series data to 6-hourly timesteps.

Calliope’s time resolution adjustment functionality allows running a function that can perform arbitrary adjustments to
the time series data in the model.

The available options include:

1. Uniform time resolution reduction through the resample function, which takes a pandas-compatible rule de-
scribing the target resolution (see above example).

2. Deriving representative days from the input time series, by applying the clustering method implemented in
calliope.time.clustering, for example:

model:
time:
function: apply_clustering
function_options:
clustering_func: kmeans
how: mean
k: 20

When using representative days, a number of additional constraints are added, based on the study undertaken by Kotzur
etal. These constraints require a new decision variable storage_inter_cluster, which tracks storage between all the
dates of the original timeseries. This particular functionality can be disabled by including storage_inter_cluster:
false in the function_options given above.

Note: It is also possible to load user-defined representative days, by pointing to a file in clustering_func in the same
format as pointing to timeseries files in constraints, e.g. clustering_func: file=clusters.csv:column_name.
Clusters are unique per datestep, so the clustering file is most readable if the index is at datestep resolution. But, the
clustering file index can be in timesteps (e.g. if sharing the same file as a constraint timeseries), with the cluster number
repeated per timestep in a day. Cluster values should be integer, starting at zero.

3. Heuristic selection of time steps, that is, the application of one or more of the masks defined in calliope. time.
masks, which will mark areas of the time series to retain at maximum resolution (unmasked) and areas where
resolution can be lowered (masked). Options can be passed to the masking functions by specifying options. A
time. function can still be specified and will be applied to the masked areas (i.e. those areas of the time series
not selected to remain at the maximum resolution), as in this example, which looks for the week of minimum
and maximum potential wind generation (assuming a wind technology was specified), then reduces the rest of
the input time series to 6-hourly resolution:

model:
time:
masks:
- {function: extreme, options: {padding: 'calendar_week', tech: 'wind', how:
— max }F (continues on next page)

48 Chapter 1. User guide

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
https://doi.org/10.1016/j.apenergy.2018.01.023
https://doi.org/10.1016/j.apenergy.2018.01.023

Calliope Documentation, Release 0.6.8

(continued from previous page)

- {function: extreme, options: {padding: 'calendar_week', tech: 'wind', how:

< 'min'}}
function: resample
function_options: {'resolution’': '6H'}

Warning: When using time clustering or time masking, the resulting timesteps will be assigned different weights
depending on how long a period of time they represent. Weights are used for example to give appropriate weight
to the operational costs of aggregated typical days in comparison to individual extreme days, if both exist in
the same processed time series. The weighting is accessible in the model data, e.g. through model.inputs.
timestep_weights. The interpretation of results when weights are not 1 for all timesteps requires caution. Pro-
duction values are not scaled according to weights, but costs are multiplied by weight, in order to weight different
timesteps appropriately in the objective function. This means that costs and production values are not consistent
without manually post-processing them by either multipyling production by weight (production would then be in-
consistent with capacity) or dividing costs by weight. The computation of levelised costs and of capacity factors
takes weighting into account, so these values are consisten and can be used as usual.

See also:

See the implementation of constraints in calliope.backend.pyomo.constraints for more detail on timestep
weights and how they affect model constraints.

1.8.2 Setting a random seed

By specifying model . random_seed in the model configuration, any alphanumeric string can be used to initialise the
random number generator at the very start of model processing.

This is useful for full reproducibility of model results where time series clustering is used, as clustering methods such
as k-means depend on randomly generated initial conditions.

Note that this affects only the random number generator used in Calliope’s model preprocessing and not in any way
the solver used to solve the model (any solver-specific options need to be set specifically for that solver; see Specifying
custom solver options).

1.8.3 Using tech_groups to group configuration

In a large model, several very similar technologies may exist, for example, different kinds of PV technologies with
slightly different cost data or with different potentials at different model locations.

To make it easier to specify closely related technologies, tech_groups can be used to specify configuration shared
between multiple technologies. The technologies then give the tech_group as their parent, rather than one of the
abstract base technologies.

You can as well extend abstract base technologies, by adding an attribute that will be in effect for all technologies
derived from the base technology. To do so, use the name of the abstract base technology for your group, but omit the
parent.

For example:

tech_groups:

supply:
constraints:

(continues on next page)

1.8. Advanced features 49

Calliope Documentation, Release 0.6.8

(continued from previous page)

monetary:
interest_rate: 0.1
pv:
essentials:
parent: supply
carrier: power
constraints:
resource: file=pv_resource.csv
lifetime: 30
costs:
monetary:
om_annual_investment_fraction: 0.05
depreciation_rate: 0.15

techs:
pv_large_scale:
essentials:
parent: pv
name: 'Large-scale PV'
constraints:
energy_cap_max: 2000
costs:
monetary:
energy_cap: 750
pv_rooftop:
essentials:
parent: pv
name: 'Rooftop PV'
constraints:
energy_cap_max: 10000
costs:
monetary:
energy_cap: 1000

None of the tech_groups appear in model results, they are only used to group model configuration values.

1.8.4 Removing techs, locations and links
By specifying exists: false in the model configuration, which can be done for example through overrides, model
components can be removed for debugging or scenario analysis.
This works for:
* Techs: techs.tech_name.exists: false
e Locations: locations.location_name.exists: false
e Links: 1links.locationl,location2.exists: false
 Techs at a specific location: locations.location_name.techs.tech_name.exists: false

* Transmission techs at a specific location: links.locationl,location2.techs.transmission_tech.
exists: false

* Group constraints: group_constraints.my_constraint.exists: false

50 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

1.8.5 Operational mode

In planning mode, constraints are given as upper and lower boundaries and the model decides on an optimal system
configuration. In operational mode, all capacity constraints are fixed and the system is operated with a receding horizon
control algorithm.

To specify a runnable operational model, capacities for all technologies at all locations must have be defined. This
can be done by specifying energy_cap_equals. In the absence of energy_cap_equals, constraints given as
energy_cap_max are assumed to be fixed in operational mode.

Operational mode runs a model with a receding horizon control algorithm. This requires two additional settings:

run:
operation:

horizon: 48 # hours

window: 24 # hours

horizon specifies how far into the future the control algorithm optimises in each iteration. window specifies how many
of the hours within horizon are actually used. In the above example, decisions on how to operate for each 24-hour
window are made by optimising over 48-hour horizons (i.e., the second half of each optimisation run is discarded). For
this reason, horizon must always be larger than window.

1.8.6 SPORES mode

SPORES refers to Spatially-explicit Practically Optimal REsultS. This run mode allows a user to generate any number
of alternative results which are within a certain range of the optimal cost. It follows on from previous work in the field
of modelling to generate alternatives (MGA), with a particular emphasis on alternatives that vary maximally in the
spatial dimension. This run mode was developed for and implemented in a study on the future Italian energy system.
As an example, if you wanted to generate 10 SPORES, all of which are within 10% of the optimal system cost, you
would define the following in your run configuration:

run.mode: spores
run.spores_options:

spores_number: 10 # The number of SPORES to generate

slack: 0.1 # The fraction above the cost-optimal cost to set the maximum cost.
—during SPORES

score_cost_class: spores_score # The cost class to optimise against when generating.,
—SPORES

slack_cost_group: systemwide_cost_max # The group constraint name in which the_
< cost_max" constraint is assigned, for use alongside the slack and cost-optimal cost

You will also need to manually set up some other parts of your model to deal with SPORES:

1. Set up a group constraint that can limit the total cost of your system to the SPORES cost (i.e. optimal + 10%).
The initial value being infinite ensures it does not impinge on the initial cost-optimal run; the constraint will be
adapted internally to set a new value which corresponds to the optimal cost plus the slack.

group_constraints:
systemwide_cost_max.cost_max.monetary: .inf

2. Assign a spores_score cost to all technologies and locations that you want to limit within the scope of finding
alternatives. The spores_score is the cost class against which the model optimises in the generation of SPORES:
technologies at locations with higher scores will be penalised in the objective function, so are less likely to be
chosen. In the National Scale example model, this looks like:

1.8. Advanced features 51

https://doi.org/10.1016/j.joule.2020.08.002

Calliope Documentation, Release 0.6.8

techs.ccgt.costs.spores_score.energy_cap: 0
techs.ccgt.costs.spores_score.interest_rate: 1
techs.csp.costs.spores_score.energy_cap: 0
techs.csp.costs.spores_score.interest_rate: 1
techs.battery.costs.spores_score.energy_cap: 0
techs.battery.costs.spores_score.interest_rate: 1
techs.ac_transmission.costs.spores_score.energy_cap: 0
techs.ac_transmission.costs.spores_score.interest_rate: 1

Note: We use and recommend using ‘spores_score’ and ‘systemwide_cost_max’ to define the cost class and group
constraint, respectively. However, these are user-defined, allowing you to choose terminology that best fits your use-
case.

1.8.7 Generating scripts to run a model many times

Scenarios and overrides can be used to run a given model multiple times with slightly changed settings or constraints.

This functionality can be used together with the calliope generate_runs and calliope generate_scenarios
command-line tools to generate scripts that run a model many times over in a fully automated way, for example, to
explore the effect of different technology costs on model results.

calliope generate_runs, at a minimum, must be given the following arguments:
* the model configuration file to use
* the name of the script to create

e --kind: Currently, three options are available. windows creates a Windows batch (.bat) script that runs all
models sequentially, bash creates an equivalent script to run on Linux or macOS, bsub creates a submission
script for a LSF-based high-performance cluster, and sbatch creates a submission script for a SLURM-based
high-performance cluster.

e --scenarios: A semicolon-separated list of scenarios (or overrides/combinations of overrides) to gener-
ate scripts for, for example, scenariol;scenario2 or overridel,override2a;overridel,override2b.
Note that when not using manually defined scenario names, a comma is used to group overrides together into a
single model —in the above example, overridel, override2a would be applied to the first run and overridel,
override2b be applied to the second run

A fully-formed command generating a Windows batch script to run a model four times with each of the scenarios
“runl”, “run2”, “run3”, and “run4’:

calliope generate_runs model.yaml run_model.bat --kind=windows --scenarios "runl;run2;
—run3;rund"

Optional arguments are:
e --cluster_threads: specifies the number of threads to request on a HPC cluster
e —-cluster_mem: specifies the memory to request on a HPC cluster
e --cluster_time: specifies the run time to request on a HPC cluster

e --additional_args: A text string of any additional arguments to pass directly through to calliope run in
the generated scripts, for example, --additional_args="-debug”.

e --debug: Print additional debug information when running the run generation script.

52 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

An example generating a script to run on a bsub-type high-performance cluster, with additional arguments to specify
the resources to request from the cluster:

calliope generate_runs model.yaml submit_runs.sh --kind=bsub --cluster_mem=1G --cluster_
—time=100 --cluster_threads=5 --scenarios "runl;run2;run3;rund"

Running this will create two files:
e submit_runs.sh: The cluster submission script to pass to bsub on the cluster.
e submit_runs.array.sh: The accompanying script defining the runs for the cluster to execute.

In all cases, results are saved into the same directory as the script, with filenames of the form
out_{run_number}_{scenario_name}.nc (model results) and plots_{run_number}_{scenario_name}.
html (HTML plots), where {run_number} is the run number and {scenario_name} is the name of the scenario (or
the string defining the overrides applied). On a cluster, log files are saved to files with names starting with 1og_ in the
same directory.

Finally, the calliope generate_scenarios tool can be used to quickly generate a file with scenarios definition
for inclusion in a model, if a large enough number of overrides exist to make it tedious to manually combine them into
scenarios. Assuming that in model.yaml a range of overrides exist that specify a subset of time for the years 2000
through 2010, called “y2000” through “y2010”, and a set of cost-related overrides called “cost_low”, “cost_medium”
and “cost_high”, the following command would generate scenarios with combinations of all years and cost overrides,
calling them “run_1", “run_2", and so on, and saving them to scenarios.yaml:

calliope generate_scenarios model.yaml scenarios.yaml y2000;y2001;y2002;2003;y2004;y2005;
—y2006;2007;2008;y2009;2010 cost_low;cost_medium;cost_high --scenario_name_prefix="run_"

1.8.8 Importing other YAML files in overrides

When using overrides (see Scenarios and overrides), it is possible to have import statements within overrides for more
flexibility. The following example illustrates this:

overrides:
some_override:
techs:
some_tech.constraints.energy_cap_max: 10
import: [additional_definitions.yaml]

additional_definitions.yaml:

techs:
some_other_tech.constraints.energy_eff: 0.1

This is equivalent to the following override:

overrides:
some_override:
techs:
some_tech.constraints.energy_cap_max: 10
some_other_tech.constraints.energy_eff: 0.1

1.8. Advanced features 53

Calliope Documentation, Release 0.6.8

1.8.9 Interfacing with the solver backend

On loading a model, there is no solver backend, only the input dataset. The backend is generated when a user calls
run() on their model. Currently this will call back to Pyomo to build the model and send it off to the solver, given by the
user in the run configuration run.solver. Once built, solved, and returned, the user has access to the results dataset
model .results and interface functions with the backend model .backend.

You can use this interface to:

1. Get the raw data on the inputs used in the optimisation. By running model.backend.
get_input_params () auser get an xarray Dataset which will look very similar to model . inputs, except
that assumed default values will be included. You may also spot a bug, where a value in model.inputs
is different to the value returned by this function.

2. Update a parameter value. If you are interested in updating a few values in the model, you can run model.
backend.update_param(). For example, to update the energy efficiency of your ccgt technology
in location regionl from 0.5 to 0.1, you can run model.backend.update_param(‘energy_eff’,
{‘regionl::ccgt: 0.1})". This will not affect results at this stage, you’ll need to rerun the backend
(point 4) to optimise with these new values.

Note: If you are interested in updating the objective function cost class weights, you will need to
set ‘objective_cost_class’ as the parameter, e.g. model.backend.update_param(‘objective_cost_class’,
{‘monetary’: 0.5}).

3. Activate / Deactivate a constraint or objective. Constraints can be activated and deactivate such that they will
or will not have an impact on the optimisation. All constraints are active by default, but you might like to
remove, for example, a capacity constraint if you don’t want there to be a capacity limit for any technologies.
Similarly, if you had multiple objectives, you could deactivate one and activate another. The result would
be to have a different objective when rerunning the backend.

Note: Currently Calliope does not allow you to build multiple objectives, you will need to understand Pyomo and add
an additional objective yourself to make use of this functionality. The Pyomo ConcreteModel() object can be accessed
at model._backend_model.

4. Rerunning the backend. If you have edited parameters or constraint activation, you will need to rerun the op-
timisation to propagate the effects. By calling model.backend.rerun(), the optimisation will run again,
with the updated backend. This will not affect your model, but instead will return a new calliope Model
object associated with that specific rerun. You can analyse the results and inputs in this new model, but
there is no backend interface available. You’ll need to return to the original model to access the backend
again, or run the returned model using new_model.run(force_rerun=True). In the original model,
model .results will not change, and can only be overwritten by model .run(force_rerun=True).

Note: By calling model.run(force_rerun=True) any updates you have made to the backend will be overwritten.

See also:

Pyomo backend interface

54 Chapter 1. User guide

http://www.pyomo.org/documentation/

Calliope Documentation, Release 0.6.8

1.8.10 Specifying custom solver options

Gurobi

Refer to the Gurobi manual, which contains a list of parameters. Simply use the names given in the documentation
(e.g. “NumericFocus” to set the numerical focus value). For example:

run:
solver: gurobi
solver_options:
Threads: 3

NumericFocus: 2

CPLEX

Refer to the CPLEX parameter list. Use the “Interactive” parameter names, replacing any spaces with underscores (for
example, the memory reduction switch is called “emphasis memory”, and thus becomes “emphasis_memory”’). For
example:

run:

solver: cplex

solver_options:
mipgap: 0.01
mip_polishafter_absmipgap: 0.1
emphasis_mip: 1
mip_cuts: 2
mip_cuts_cliques: 3

1.9 Configuration and defaults

This section lists the available configuration options and constraints along with their default values. Defaults are auto-
matically applied in constraints whenever there is no user input for a particular value.

1.9. Configuration and defaults 55

https://www.gurobi.com/documentation/
https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.5.0/com.ibm.cplex.zos.help/Parameters/topics/introListAlpha.html

Calliope Documentation, Release 0.6.8

1.9.1 Model configuration

Setting Default Comments

calliope_version Calliope framework version this model is intended for

group_share {} Optional settings for the group_share constraint - depre-
cated and will be removed in v0.7.0

name Model name

random_seed Seed for random number generator used during cluster-
ing

reserve_margin {} Per-carrier system-wide reserve margins

subset_time Subset of timesteps as a two-element list giving the
range, e.g. [2005-01-01°, ‘2005-01-05’], or a single
string, e.g. ‘2005-01°

time {} Optional settings to adjust time resolution, see 7ime res-
olution adjustment for the available options

timeseries_data_path Path to time series data

timeseries_data Dict of dataframes with time series data (when passing
in dicts rather than YAML files to Model constructor)

timeseries_dateformat T0Y-%om-Y%d Timestamp format of all time series data when read from

JoH:%M:%S file
file_allowed [‘cluster- List of configuration options allowed to specify “file="

ing_func’, ‘en-
ergy_con’, ‘en-
ergy_eff’”, ‘en-
ergy_prod’, ‘en-
ergy_ramping’,
‘export’,

‘force_resource’,
‘om_con’,

‘om_prod’,

‘parasitic_eff’,
‘resource’,

‘resource_eft’,
‘storage_loss’,
‘carrier_ratios’]

to load timeseries data. This can be updated if you're
adding a new custom constraint that requires a newly
defined parameter to be a timeseries. If updating exist-
ing parameters, you can expect existing constraints to not
change behaviour or to break on being constructed.

Base technology groups

56

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

1.9.2 Run configuration

Setting Default Comments

backend pyomo Backend to use to build and solve the model. As of
v0.6.0, only pyomo is available

bigM 1000000000.0 Used for unmet demand, but should be of a similar or-

der of magnitude as the largest cost that the model could
achieve. Too high and the model will not converge
cyclic_storage True If true, storage in the last timestep of the timeseries
is considered to be the ‘previous timestep’ in the first
timestep of the timeseries

ensure_feasibility False If true, unmet_demand will be a decision variable, to
account for an ability to meet demand with the available
supply. If False and a mismatch occurs, the optimisation
will fail due to infeasibility

mode plan Which mode to run the model in: ‘plan’, ‘operation’ or
‘spores’
objective_options {} Arguments to pass to objective function. If cost-based

objective function in use, should include ‘cost_class’
and ‘sense’ (maximize/minimize)

objective min- Name of internal objective function to use, currently
max_cost_optimizatinly min/max cost-based optimisation is available

operation {} Settings for operational mode

spores_options {} settings for SPORES (spatially-explicit, practically opti-
mal results) mode

relax_constraint {} Enable relaxing some equality constraints to be min/max
constraints. The extent of relaxation is given as a frac-
tion.

save_logs Directory into which to save logs and temporary files.
Also turns on symbolic solver labels in the Pyomo back-
end

solver_io What method the Pyomo backend should use to commu-
nicate with the solver

solver_options A list of options, which are passed on to the chosen
solver, and are therefore solver-dependent

solver cbe Which solver to use

zero_threshold le-10 Any value coming out of the backend that is smaller than

this threshold (due to floating point errors, probably) will
be set to zero

1.9.3 Per-tech constraints

The following table lists all available technology constraint settings and their default values. All of these can be set by
tech_identifier.constraints.constraint_name, e.g. nuclear.constraints.energy_cap.max.

1.9. Configuration and defaults 57

Calliope Documentation, Release 0.6.8

purchased unit

Setting Default Name Unit Comments
carrier_ratios Carrier ratios fraction Ratio of summed output of carriers
in[‘out_2’, ‘out_3’]/[‘in_2’, ‘in_3’]
to the summed output of carriers in
‘out’ / “in’. given in a nested dictio-
nary.
charge_rate Charge rate hour ! (do not use, replaced by en-
ergy_cap_per_storage_cap_max)
ratio of maximum charge/discharge
(kW) for a given maximum storage
capacity (kWh).
en- 0 Minimum energy ca- | hour ! ratio of minimum charge/discharge
ergy_cap_per_storage_cap_min pacity per storage ca- (kW) for a given storage capacity
pacity (kWh).
en- inf Maximum energy ca- | hour ! ratio of maximum charge/discharge
ergy_cap_per_storage_cap_max pacity per storage ca- (kW) for a given storage capacity
pacity (kWh).
en- Tie energy capacity to | hour !
ergy_cap_per_storage_cap_equals storage capacity
energy_cap_equals Specific installed en- | kW fixes maximum/minimum
ergy capacity if decision variables
carrier_prod/carrier_con
and overrides _max and _min
constraints.
en- System-wide spe- | kW fixes the sum to a maxi-
ergy_cap_equals_systemwide cific installed energy mum/minimum, for a particular
capacity technology, of the decision variables
carrier_prod/carrier_con over
all locations.
energy_cap_max inf Maximum installed en- | kW Limits decision variables
ergy capacity carrier_prod/carrier_con
to a maximum/minimum.
en- inf System-wide maxi- | kW Limits the sum to a maxi-
ergy_cap_max_systemwijide mum installed energy mum/minimum, for a particular
capacity technology, of the decision variables
carrier_prod/carrier_con over
all locations.
energy_cap_min 0 Minimum installed en- | kW Limits decision variables
ergy capacity carrier_prod/carrier_con
to a minimum/maximum.
energy_cap_min_use 0 Minimum carrier pro- | fraction Set to a value between 0 and 1 to
duction force minimum carrier production as
a fraction of the technology maxi-
mum energy capacity. If non-zero
and technology is not defined by
units, this will force the technology
to operate above its minimum value
at every timestep.
energy_cap_per_unit Energy capacity per | kW/unit Set the capacity of each integer unit

of a technology purchased

continues on next page

58

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

Table 2 - continued from previous page

Setting

Default

Name

Unit

Comments

energy_cap_scale

1.0

Energy capacity scale

float

Scale all energy_cap
min/max/equals/total_max/total_equa
constraints by this value

energy_con

False

Energy consumption

boolean

Allow this technology to consume
energy from the carrier (static
boolean, or from file as timeseries).

energy_eff

1.0

Energy efficiency

fraction

conversion efficiency (static, or
from file as timeseries), from
resource/storage/carrier_in
(tech dependent) to carrier_out.

en-
ergy_eff_per_distance

1.0

Energy efficiency per
distance

frac-
tion/distand

Set as value between 1 (no loss) and

e 0 (all energy lost).

energy_prod

False

Energy production

boolean

Allow this technology to supply en-
ergy to the carrier (static boolean, or
from file as timeseries).

energy_ramping

Ramping rate

fraction /
hour

Set to null to disable ramping con-
straints, otherwise limit maximum
carrier production to a fraction of
maximum capacity, which increases
by that fraction at each timestep.

export_cap

inf

Export capacity

kW

Maximum allowed export of pro-
duced energy carrier for a technol-

ogy.

export_carrier

Export carrier

N/A

Name of carrier to be exported.
Must be an output carrier of the tech-
nology

force_asynchronous_pro

d Fadse

Force asynchronous
production consump-
tion

boolean

If True, carrier_prod and car-
rier_con cannot both occur in the
same timestep

force_resource

False

Force resource

boolean

Forces this technology to use all
available resource, rather than
making it a maximum upper bound-
ary (for production) or minimum
lower boundary (for consumption).
Static boolean, or from file as time-
series

lifetime

Technology lifetime

years

Must be defined if fixed capital costs
are defined. A reasonable value for
many technologies is around 20-25
years.

one_way

False

One way

boolean

Forces a transmission technology
to only move energy in one di-
rection on the link, in this case
from default_location_from to de-
fault_location_to

parasitic_eff

1.0

Plant effi-

ciency

parasitic

fraction

Additional losses as energy gets
transferred from the plant to the car-
rier (static, or from file as time-
series), e.g. due to plant parasitic
consumption

continues on next page

1.9. Configuration and defaults

59

Calliope Documentation, Release 0.6.8

Table 2 - continued from previous page

Setting Default Name Unit Comments
resource 0 Available resource kWh | | Maximum available resource (static,
kWh/m? | | or from file as timeseries). Unit dic-
kWh/kW | tated by resource_unit
resource_area_equals Specific installed re- m?
source area
resource_area_max inf Maximum usable re- | m? If set to a finite value, restricts the
source area usable area of the technology to this
value.
resource_area_min 0 Minimum usable re- | m?
source area
re- Resource area per en- | m:sup: If set, forces resource_area to fol-
source_area_per_energy|_cap ergy capacity 2/kW low energy_cap with the given nu-
merical ratio (e.g. setting to 1.5
means that resource_area ==
5 * energy_cap)
resource_cap_equals Specific installed | kW overrides _max and _min con-
resource consumption straints.
capacity
re- False Resource capacity | boolean If true, resource_cap is forced to
source_cap_equals_energy_cap equals energy cpacity equal energy_cap
resource_cap_max inf Maximum installed | kW
resource consumption
capacity
resource_cap_min 0 Minimum installed | kW
resource consumption
capacity
resource_eff 1.0 Resource efficiency fraction Efficiency (static, or from file as
timeseries) in capturing resource be-
fore it reaches storage (if storage is
present) or conversion to carrier.
resource_min_use 0 Minimum resource | fraction Set to a value between 0 and 1 to
consumption force minimum resource consump-
tion for production technologies
resource_scale 1.0 Resource scale fraction Scale resource (either static value or
all values in timeseries) by this value
resource_unit energy Resource unit N/A Sets the wunit of resource
to either energy (i.e. kWh),

energy_per_area (i.e. kWh/m2),
or energy_per_cap (.e.
kWh/kW). energy_per_area
uses the resource_area decision
variable to scale the available
resource while energy_per_cap
uses the energy_cap decision
variable.

continues on next page

60

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

Table 2 - continued from previous page

1X

1X

Setting Default Name Unit Comments
storage_cap_equals Specific storage capac- | kWh If not defined,
ity energy_cap_equals *
energy_cap_per_storage_cap_ma
will be used as the capacity and
overrides _max and _min con-
straints.
storage_cap_max inf Maximum storage ca- | kWh If not defined, energy_cap_max *
pacity energy_cap_per_storage_cap_ma
will be used as the capacity.
storage_cap_min 0 Minimum storage ca- | kWh
pacity
storage_cap_per_unit Storage capacity per | kWh/unit | Set the storage capacity of each inte-
purchased unit ger unit of a technology purchased.
stor- 0 Storage depth of dis- | fraction Defines the minimum level of stor-
age_discharge_depth charge age state of charge, as a fraction of
total storage capacity
storage_initial 0 Initial storage level fraction Set stored energy in device at the
first timestep, as a fraction of total
storage capacity
storage_loss 0 Storage loss rate frac- rate of storage loss per hour (static,
tion/hour | or from file as timeseries), used to
calculate lost stored energy as (1 -
storage_loss)Ahours_per_timestep
units_equals Specific number of | integer Turns the model from LP to MILP.
purchased units
units_equals_systemwid, System-wide spe- | kW fixes the sum to a specific
cific installed energy value, for a particular technol-
capacity ogy, of the decision variables
carrier_prod/carrier_con over
all locations.
units_max Maximum number of | integer Turns the model from LP to MILP.
purchased units
units_max_systemwide | inf System-wide maxi- | kW Limits the sum to a maxi-
mum installed energy mum/minimum, for a particular
capacity technology, of the decision variables
carrier_prod/carrier_con over
all locations.
units_min Minimum number of | integer Turns the model from LP to MILP.

purchased units

1.9. Configuration and defaults

61

Calliope Documentation, Release 0.6.8

1.9.4 Per-tech costs

These are all the available costs, which are set to 0 by default for every defined cost class.

Costs are set by

tech_identifier.costs.cost_class.cost_name,e.g. nuclear.costs.monetary.energy_cap.

Setting Default Name Unit Comments
energy_cap 0 Cost of energy capac- | KW gro5 1
ity
en- 0 Cost of energy capac- | KW g T1" Applied to transmission links only
ergy_cap_per_distance ity, per unit distance / distance
export 0 Carrier export cost kWh ! Usually used in the negative sense,
as a subsidy.
interest_rate 0 Interest rate fraction Used when computing levelized
costs
om_annual 0 Yearly O&M costs kW
energy_cap
-1
om_annual_investment_frfiction Fractional yearly | fraction /
O&M costs total in-
vestment
om_con 0 Carrier consumption | kWh ! Applied to carrier consumption of a
cost technology
om_prod 0 Carrier production cost | kWh ! Applied to carrier production of a
technology
purchase 0 Purchase cost unit T Triggers a binary variable for that
technology to say that it has been
purchased or is applied to integer
variable units
resource_area 0 Cost of resource area m~
resource_cap 0 Cost of resource con- | kW !
sumption capacity
storage_cap 0 Cost of storage capac- | kWh !
ity

Technology depreciation settings apply when calculating levelized costs. The interest rate and life times must be set
for each technology with investment costs.

1.9.5 Group constraints

See Group constraints for a full listing of available group constraints.

1.9.6 Abstract base technology groups

Technologies must always define a parent, and this can either be one of the pre-defined abstract base technology groups
or a user-defined group (see Using tech_groups to group configuration). The pre-defined groups are:

» supply: Supplies energy to a carrier, has a positive resource.

* supply_plus: Supplies energy to a carrier, has a positive resource. Additional possible constraints, including
efficiencies and storage, distinguish this from supply.

* demand: Demands energy from a carrier, has a negative resource.

62

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

* storage: Stores energy.

e transmission: Transmits energy from one location to another.

» conversion: Converts energy from one carrier to another.

* conversion_plus: Converts energy from one or more carrier(s) to one or more different carrier(s).

A technology inherits the configuration that its parent group specifies (which, in turn, may inherit from its own parent).

Note: The identifiers of the abstract base tech groups are reserved and cannot be used for user-defined technologies.
However, you can amend an abstract base technology group for example by a lifetime attribute that will be in effect for
all technologies derived from that group (see Using tech_groups to group configuration).

The following lists the pre-defined base tech groups and the defaults they provide.

supply

Default constraints provided by the parent tech group:

essentials:
parent:

constraints:
energy_prod: true
resource: inf
resource_unit: energy

costs: {}

Required constraints, allowed constraints, and allowed costs:

required_constraints: []
allowed_constraints:

- energy_cap_equals

- energy_cap_equals_systemwide
- energy_cap_max

- energy_cap_max_systemwide
- energy_cap_min

- energy_cap_min_use

- energy_cap_per_unit

- energy_cap_scale

- energy_eff

- energy_prod

- energy_ramping

- export_cap

- export_carrier

- force_resource

- lifetime

- resource

- resource_area_equals

- resource_area_max

- resource_area_min

- resource_area_per_energy_cap

(continues on next page)

1.9. Configuration and defaults 63

Calliope Documentation, Release 0.6.8

(continued from previous page)

- resource_min_use

- resource_scale

- resource_unit

- units_equals

- units_equals_systemwide
- units_max

- units_max_systemwide

- units_min
allowed_costs:

- depreciation_rate

- energy_cap

- export

- interest_rate

- om_annual

- om_annual_investment_fraction
- om_con

- om_prod

- purchase

- resource_area

supply_plus

Default constraints provided by the parent tech group:

essentials:
parent:

constraints:
energy_prod: true
resource: inf
resource_eff: 1.0
resource_unit: energy

costs: {}

Required constraints, allowed constraints, and allowed costs:

required_constraints: []
allowed_constraints:

- charge_rate

- energy_cap_per_storage_cap_min
- energy_cap_per_storage_cap_max
- energy_cap_per_storage_cap_equals
- energy_cap_equals

- energy_cap_equals_systemwide

- energy_cap_max

- energy_cap_max_systemwide

- energy_cap_min

- energy_cap_min_use

- energy_cap_per_unit

- energy_cap_scale

- energy_eff

(continues on next page)

64

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

energy_prod
energy_ramping
export_cap
export_carrier
force_resource
lifetime
parasitic_eff
resource
resource_area_equals
resource_area_max
resource_area_min
resource_area_per_energy_cap
resource_cap_equals
resource_cap_equals_energy_cap
resource_cap_max
resource_cap_min
resource_eff
resource_min_use
resource_scale
resource_unit
storage_cap_equals
storage_cap_max
storage_cap_min
storage_cap_per_unit
storage_initial
storage_loss
units_equals
units_equals_systemwide
units_max
units_max_systemwide
units_min

allowed_costs:

depreciation_rate
energy_cap

export
interest_rate
om_annual
om_annual_investment_fraction
om_con

om_prod

purchase
resource_area
resource_cap
storage_cap

1.9. Configuration and defaults

65

Calliope Documentation, Release 0.6.8

demand

Default constraints provided by the parent tech group:

essentials:
parent:

constraints:
energy_con: true
force_resource: true
resource_unit: energy

costs: {}

Required constraints, allowed constraints, and allowed costs:

required_constraints:
- resource
allowed_constraints:
- energy_con

- force_resource

- resource

- resource_area_equals
- resource_scale

- resource_unit
allowed_costs:

- om_con

storage

Default constraints provided by the parent tech group:

essentials:
parent:

constraints:
energy_con: true
energy_prod: true
storage_cap_max: inf

costs: {}

Required constraints, allowed constraints, and allowed costs:

required_constraints: []
allowed_constraints:

- charge_rate

- energy_cap_per_storage_cap_min

- energy_cap_per_storage_cap_max

- energy_cap_per_storage_cap_equals
- energy_cap_equals

- energy_cap_equals_systemwide

- energy_cap_max

- energy_cap_max_systemwide

(continues on next page)

66

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

- energy_cap_min

- energy_cap_min_use

- energy_cap_per_unit

- energy_cap_scale

- energy_con

- energy_eff

- energy_prod

- energy_ramping

- export_cap

- export_carrier

- force_asynchronous_prod_con
- lifetime

- storage_cap_equals

- storage_cap_max

- storage_cap_min

- storage_cap_per_unit

- storage_initial

- storage_loss

- storage_time_max

- storage_discharge_depth
- units_equals

- units_equals_systemwide
- units_max

- units_max_systemwide

- units_min
allowed_costs:

- depreciation_rate

- energy_cap

- export

- interest_rate

- om_annual

- om_annual_investment_fraction
- om_prod

- purchase

- storage_cap

transmission

Default constraints provided by the parent tech group:

essentials:
parent:
constraints:
energy_con: true
energy_prod: true
costs: {}

Required constraints, allowed constraints, and allowed costs:

1.9. Configuration and defaults

67

Calliope Documentation, Release 0.6.8

required_constraints: []
allowed_constraints:

energy_cap_equals
energy_cap_min
energy_cap_max
energy_cap_per_unit
energy_cap_scale
energy_con

energy_eff

energy_eff per_distance
energy_prod
force_asynchronous_prod_con
lifetime

one_way

allowed_costs:

depreciation_rate

energy_cap
energy_cap_per_distance
interest_rate

om_annual
om_annual_investment_fraction
om_prod

purchase
purchase_per_distance

conversion

Default constraints provided by the parent tech group:

essentials:
parent:
constraints:
energy_con: true
energy_prod: true
costs: {}

Required constraints, allowed constraints, and allowed costs:

required_constraints: []
allowed_constraints:

energy_cap_equals
energy_cap_equals_systemwide
energy_cap_max
energy_cap_max_systemwide
energy_cap_min
energy_cap_min_use
energy_cap_per_unit
energy_cap_scale

energy_con

energy_eff

(continues on next page)

68

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

- energy_prod

- energy_ramping

- export_cap

- export_carrier

- lifetime

- units_equals

- units_equals_systemwide
- units_max

- units_max_systemwide

- units_min
allowed_costs:

- depreciation_rate

- energy_cap

- export

- interest_rate

- om_annual

- om_annual_investment_fraction
- om_con

- om_prod

- purchase

conversion_plus

Default constraints provided by the parent tech group:

essentials:
parent:
constraints:
energy_con: true
energy_prod: true
costs: {}

Required constraints, allowed constraints, and allowed costs:

required_constraints: []
allowed_constraints:

- carrier_ratios

- energy_cap_equals

- energy_cap_equals_systemwide
- energy_cap_max

- energy_cap_max_systemwide
- energy_cap_min

- energy_cap_min_use

- energy_cap_per_unit

- energy_cap_scale

- energy_con

- energy_eff

- energy_prod

- energy_ramping

- export_cap

(continues on next page)

1.9. Configuration and defaults

69

Calliope Documentation, Release 0.6.8

(continued from previous page)

export_carrier

lifetime

units_equals
units_equals_systemwide
units_max
units_max_systemwide
units_min

allowed_costs:

depreciation_rate

energy_cap

export

interest_rate

om_annual
om_annual_investment_fraction
om_con

om_prod

purchase

1.10 Troubleshooting

1.10.1 General strategies

* Building a smaller model: model. subset_time allows specifying a subset of timesteps to be used. This can

be useful for debugging purposes as it can dramatically speed up model solution times. The timestep subset can
be specified as [startdate, enddate],e.g. [‘2005-01-01’, ‘2005-01-31’], or as a single time period,
such as 2005-01 to select January only. The subsets are processed before building the model and applying time
resolution adjustments, so time resolution reduction functions will only see the reduced set of data.

Retaining logs and temporary files: The setting run.save_logs, disabled by default, sets the directory into
which to save logs and temporary files from the backend, to inspect solver logs and solver-generated model files.
This also turns on symbolic solver labels in the Pyomo backend, so that all model components in the backend
model are named according to the corresponding Calliope model components (by default, Pyomo uses short
random names for all generated model components).

Analysing the optimisation problem without running the model: If you are comfortable with navigating
Pyomo objects, then you can build the Pyomo model backend without running the optimisation problem, us-
ing model.run(build_only=True). Pyomo objects are then accessible within model._backend_model.
For instance, the constraint limiting energy capacity can be viewed by calling model._backend_model.
energy_capacity_constraint.pprint(‘hi’). Alternatively, if you are working from the command line
or have little experience with Pyomo, you can generate an LP file. The LP file contains the mathematical model
formulation of a fully built Calliope model. It is a standard format that can be passed to various solvers. Exam-
ining the LP file manually or using additional tools (see below) can help find issues when a model is infeasible
or unbounded. To build a model and save it to LP without actually solving it, use:

calliope run my_model.yaml --save_lp=my_saved_model.lp

or, interactively:

model . to_lp('my_saved_model.lp")

70

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

1.10.2 Improving solution times

One way to improve solution time is to reduce the size of a problem (another way is to address potential numerical
issues, which is dealt with further below in Understanding infeasibility and numerical instability).

Number of variables

The sets locs, techs, timesteps, carriers, and costs all contribute to model complexity. A reduction of any of
these sets will reduce the number of resulting decision variables in the optimisation, which in turn will improve solution
times.

Note: By reducing the number of locations (e.g. merging nearby locations) you also remove the technologies linking
those locations to the rest of the system, which is additionally beneficial.

Currently, we only provide automatic set reduction for timesteps. Timesteps can be resampled (e.g. 1hr -> 2hr intervals),
masked (e.g. lhr -> 12hr intervals except one week of particular interest), or clustered (e.g. 365 days to 5 days, each
representing 73 days of the year, with lhr resolution). In so doing, significant solution time improvements can be
acheived.

See also:

Time resolution adjustment, Stefan Pfenninger (2017). Dealing with multiple decades of hourly wind and PV time
series in energy models: a comparison of methods to reduce time resolution and the planning implications of inter-
annual variability. Applied Energy.

Complex technologies

Calliope is primarily an LP framework, but application of certain constraints will trigger binary or integer decision
variables. When triggered, a MILP model will be created.

In both cases, there will be a time penalty, as linear programming solvers are less able to converge on solutions of prob-
lems which include binary or integer decision variables. But, the additional functionality can be useful. A purchasing
cost allows for a cost curve of the form y = Mz + C to be applied to a technology, instead of the LP costs which are
all of the form y = M =. Integer units also trigger per-timestep decision variables, which allow technologies to be “on”
or “off” at each timestep.

Additionally, in LP models, interactions between timesteps (in storage technologies) can lead to longer solution time.
The exact extent of this is as-yet untested.

Model mode

Solution time increases more than linearly with the number of decision variables. As it splits the model into ~daily
chunks, operational mode can help to alleviate solution time of big problems. This is clearly at the expense of fixing
technology capacities. However, one solution is to use a heavily time clustered plan mode to get indicative model
capacities. Then run operate mode with these capacities to get a higher resolution operation strategy. If necessary,
this process could be iterated.

See also:

Operational mode

1.10. Troubleshooting 71

https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1016/j.apenergy.2017.03.051

Calliope Documentation, Release 0.6.8

1.10.3 Influence of solver choice on speed

The open-source solvers (GLPK and CBC) are slower than the commercial solvers. If you are an academic researcher,
it is recommended to acquire a free licence for Gurobi or CPLEX to very quickly improve solution times. GLPK in
particular is slow when solving MILP models. CBC is an improvement, but can still be several orders of magnitude
slower at reaching a solution than Gurobi or CPLEX.

We tested solution time for various solver choices on our example models, extended to run over a full year (8760
hours). These runs took place on the University of Cambridge high performance computing cluster, with a maximum
run time of 5 hours. As can be seen, CBC is far superior to GLPK. If introducing binary constraints, although CBC is
an improvement on GLPK, access to a commercial solver is preferable.

National scale example model size
* Variables : 420526 [Nneg: 219026, Free: 105140, Other: 96360]
* Linear constraints : 586972 [Less: 315373, Greater: 10, Equal: 271589]
MILP urban scale example model
 Variables: 586996 [Nneg: 332913, Free: 78880, Binary: 2, General Integer: 8761, Other: 166440]
 Linear constraints: 788502 [Less: 394226, Greater: 21, Equal: 394255]

Solution time

Solver Solution time
National | Urban

GLPK 4:35:40 >5hrs

CBC 0:04:45 0:52:13

Gurobi (1 thread) | 0:02:08 0:03:21
CPLEX (1 thread) | 0:04:55 0:05:56
Gurobi (4 thread) | 0:02:27 0:03:08
CPLEX (4 thread) | 0:02:16 0:03:26

See also:

Specifying custom solver options

1.10.4 Understanding infeasibility and numerical instability

Note: A good first step when faced with an infeasible model is often to remove constraints, in particular more complex
constraints. For example, different combinations of group constraints can easily introduce mutually exclusive require-
ments on capacities or output from specific technologies. Once a minimal model works, more complex constraints can
be turned on again one after the other.

72 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

Using the Gurobi solver

To understand infeasible models:
e Set run.solver_options.DualReductions: 0 to see whether a model is infeasible or unbounded.

* To analyse infeasible models, save an LP file with the --save_lp command-line option, then use Gurobi to
generate an Irreducible Inconsistent Subsystem that shows which constraints are infeasible:

gurobi_cl ResultFile=result.ilp my_saved_model.lp

More detail on this is in the official Gurobi documentation.

To deal with numerically unstable models, try setting run. solver_options.Presolve: 0, aslarge numeric ranges
can cause the pre-solver to generate an infeasible or numerically unstable model. The Gurobi Guidelines for Numerical
Issues give detailed guidance for strategies to address numerically difficult optimisation problems.

Using the CPLEX solver

There are two ways to understand infeasibility when using the CPLEX solver, the first is quick and the second is more
involved:

1. Save solver logs for your model (run.save_logs: path/to/log_directory). In the directory,
open the file ending in ‘.cplex.og’ to see the CPLEX solver report. If the model is infeasible or
unbounded, the offending constraint will be identified (e.g. “SOLVER: Infeasible variable = slack
c_u_carrier_production_max_constraint(regionl_2__csp__power_2005_01_01_07_00_00)_"). This may be
enough to understand why the model is failing, if not...

2. Open the LP file in CPLEX interactive (run cplex in the command line to invoke a CPLEX interactive session).
The LP file for the problem ends with “.1p’ in the log folder (read path/to/file.lp). Once loaded, you can try relaxing
variables / constraints to see if the problem can be solved with relaxation (FeasOpt). You can also identify
conflicting constraints (fools conflict) and print those constraints directly (display conflict all). There are many
more commands available to analyse individual constraints and variables in the Official CPLEX documentation.

Similar to Gurobi, numerically unstable models may lead to unexpected infeasibility, so you can try run.
solver_options.preprocessing_presolve: 0 or you can request CPLEX to more aggressively scale the prob-
lem itself using the solver option read_scale: 1. The CPLEX documentation page on numeric difficulties goes
into more detail on numeric instability.

1.10.5 Rerunning a model

After running, if there is an infeasibility you want to address, or simply a few values you dont think were quite right,
you can change them and rerun your model. If you change them in model.inputs, just rerun the model as model.
run(force_rerun=True).

Note: model.run(force_rerun=True) will replace you current model.results and rebuild he entire model backend.
You may want to save your model before doing this.

Particularly if your problem is large, you may not want to rebuild the backend to change a few small values. Instead you
can interface directly with the backend using the model . backend functions, to update individual parameter values and
switch constraints on/off. By rerunning the backend specifically, you can optimise your problem with these backend
changes, without rebuilding the backend entirely.

1.10. Troubleshooting 73

https://www.gurobi.com/documentation/current/refman/solving_a_model2.html
http://www.gurobi.com/documentation/current/refman/numerics_why_scaling_and_g.html
https://www.gurobi.com/documentation/current/refman/numerics_gurobi_guidelines.html
https://www.gurobi.com/documentation/current/refman/numerics_gurobi_guidelines.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/infeas_unbd/partInfeasUnbnded_title_synopsis.html
https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.4.0/com.ibm.cplex.zos.help/Parameters/topics/ScaInd.html
https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.4.0/com.ibm.cplex.zos.help/UsrMan/topics/cont_optim/simplex/20_num_difficulty.html

Calliope Documentation, Release 0.6.8

Note: model.inputs and model.results will not be changed when updating and rerunning the backend. Instead,
a new xarray Dataset is returned.

See also:

Interfacing with the solver backend

1.10.6 Debugging model errors

Calliope provides a method to save its fully built and commented internal representation of a model to a single YAML
file with Model . save_commented_model_yaml (path). Comments in the resulting YAML file indicate where orig-
inal values were overridden.

Because this is Calliope’s internal representation of a model directly before the model_data xarray.Dataset is
built, it can be useful for debugging possible issues in the model formulation, for example, undesired constraints that
exist at specific locations because they were specified model-wide without having been superseded by location-specific
settings.

Further processing of the data does occur before solving the model. The final values of parameters used by the backend
solver to generate constraints can be analysed when running an interactive Python session by running model .backend.
get_input_params (). This provides a user with an xarray Dataset which will look very similar to model. inputs,
except that assumed default values will be included. An attempt at running the model has to be made in order to be
able to run this command.

See also:

If using Calliope interactively in a Python session, we recommend reading up on the Python debugger and (if using
Jupyter notebooks) making use of the “odebug magic.

1.11 More info (reference)

This section contains additional information useful as reference: a list of all example models and their configuration, a
listing of different possible configuration values, and the detailed mathematical formulation.

We suggest you read the Building a model, Running a model and Analysing a model sections first before referring to
this section.

1.11.1 Built-in example models
This section gives a listing of all the YAML configuration files included in the built-in example models. Refer to the
tutorials section for a brief overview of how these parts together provide a working model.

The example models are accessible in the calliope. examples module. To create an instance of an example model,
call its constructor function, e.g.

urban_model = calliope.examples.urban_scale()

The available example models and their constructor functions are:

calliope.examples.national_scale(*args, **kwargs)
Returns the built-in national-scale example model.

calliope.examples.time_clustering(*args, **kwargs)
Returns the built-in national-scale example model with time clustering.

74 Chapter 1. User guide

https://docs.python.org/3/library/pdb.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-debug

Calliope Documentation, Release 0.6.8

calliope.examples.time_resampling(*args, **kwargs)
Returns the built-in national-scale example model with time resampling.

calliope.examples.urban_scale(*args, **kwargs)
Returns the built-in urban-scale example model.

calliope.examples.milp (*args, **kwargs)
Returns the built-in urban-scale example model with MILP constraints enabled.

calliope.examples.operate(*args, **kwargs)
Returns the built-in urban-scale example model in operate mode.

calliope.examples.time_masking(*args, **kwargs)
Returns the built-in urban-scale example model with time masking.

National-scale example

Available as calliope.examples.national_scale.

Model settings

The layout of the model directory is as follows (+ denotes directories, - files):

- model.yaml
- scenarios.yaml
+ timeseries_data
- csp_resource.csv
- demand-1.csv
- demand-2.csv
+ model_config
- locations.yaml
- techs.yaml

model .yaml:

import: # Import other files from paths relative to this file, or absolute paths
- 'model_config/techs.yaml' # This file specifies the model's technologies
- 'model_config/locations.yaml' # This file specifies the model's locations
- 'scenarios.yaml' # Scenario and override group definitions

Model configuration: all settings that affect the built model
model:

name: National-scale example model

What version of Calliope this model is intended for
calliope_version: 0.6.8

Time series data path - can either be a path relative to this file, or an absolute.
—path
timeseries_data_path: 'timeseries_data’'

subset_time: ['2005-01-01', '2005-01-05'] # Subset of timesteps

Run configuration: all settings that affect how the built model is run

(continues on next page)

1.11. More info (reference) 75

Calliope Documentation, Release 0.6.8

(continued from previous page)

run:
solver: cbc

ensure_feasibility: true # Switches on the "unmet demand" constraint

bigM: 1e6 # Sets the scale of unmet demand, which cannot be too high, otherwise the.
—optimisation will not converge

zero_threshold: 1le-10 # Any value coming out of the backend that is smaller than.
—this (due to floating point errors, probably) will be set to zero

mode: plan # Choices: plan, operate

objective_options.cost_class: {monetary: 1}

scenarios.yaml:

##
Scenarios are optional, named combinations of overrides
##
scenarios:
cold_fusion_with_production_share: ['cold_fusion', 'cold_fusion_prod_share']

cold_fusion_with_capacity_share: ['cold_fusion', 'cold_fusion_cap_share']

##

Overrides are the building blocks from which scenarios can be defined

##

overrides:

profiling:

model .name: 'National-scale example model (profiling run)'
model.subset_time: ['2005-01-01', '2005-01-15"]
run.solver: cbc

time_resampling:
model .name: 'National-scale example model with time resampling'
model.subset_time: '2005-01'
Resample time resolution to 6-hourly
model.time: {function: resample, function_options: {'resolution': '6H'}}

time_clustering:
model .random_seed: 23
model .name: 'National-scale example model with time clustering'
model.subset_time: null # No time subsetting
Cluster timesteps using k-means
model.time: {function: apply_clustering, function_options: {clustering_func:
< 'kmeans', how: 'closest', k: 10}}

spores:
run.mode: spores
run.spores_options:
score_cost_class: 'spores_score'

(continues on next page)

76 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

slack_cost_group:
slack: 0.1
spores_number: 3

'systemwide_cost_max'

objective_cost_class: {'monetary': 0, 'spores_score': 1}
run.objective_options.cost_class: {'monetary': 1, 'spores_score': 0}
group_constraints:

systemwide_cost_max.cost_max.monetary: 1lel® # very large, non-infinite value

techs.ccgt.costs.spores_score.energy_cap: 0
techs.ccgt.costs.spores_score.interest_rate: 1
techs.csp.costs.spores_score.energy_cap: 0
techs.csp.costs.spores_score.interest_rate: 1
techs.battery.costs.spores_score.energy_cap: 0
techs.battery.costs.spores_score.interest_rate: 1
techs.ac_transmission.costs.spores_score.energy_cap: 0
techs.ac_transmission.costs.spores_score.interest_rate: 1

operate:

run.mode: operate

run.operation:

window: 12

horizon: 24

model . subset_time:

locations:

regionl.techs

region2.techs
region2.techs

regionl-1.
regionl-1.
regionl-1.

regionl-2.
regionl-2.
regionl-2.

regionl-3.
regionl-3.
regionl-3.

links:

techs.
techs.
techs.

techs.
techs.
techs.

techs.
techs.
techs.

['2005-01-01",

csp.
csp.
csp.

csp.
csp.

csp

csp

csp.
csp.

constraints.
constraints.

constraints

constraints.
constraints.
.constraints

.constraints.
constraints.

constraints

'2005-01-10"]
.ccgt.constraints.energy_cap_equals: 30000

.battery.constraints.energy_cap_equals: 1000
.battery.constraints.storage_cap_equals: 5240

energy_cap_equals: 10000
storage_cap_equals: 244301

.resource_area_equals: 130385

energy_cap_equals: 0
storage_cap_equals: 0

.resource_area_equals: 0

energy_cap_equals: 2534
storage_cap_equals: 25301

.resource_area_equals: 8487

regionl,region2.techs.ac_transmission.constraints.energy_cap_equals: 3231
regionl,regionl-1.techs. free_transmission.constraints.energy_cap_equals: 9000
regionl,regionl-2.techs. free_transmission.constraints.energy_cap_equals: 0
regionl,regionl-3.techs. free_transmission.constraints.energy_cap_equals: 2281

check_feasibility:
run:

ensure_feasibility: False
'check_feasibility'

objective:
model:

(continues on next page)

1.11. More info (reference)

77

Calliope Documentation, Release 0.6.8

(continued from previous page)

subset_time: '2005-01-04'

reserve_margin:
model:
Model-wide settings for the system-wide reserve margin
Even setting a reserve margin of zero activates the constraint,
forcing enough installed capacity to cover demand in
the maximum demand timestep
reserve_margin:
power: 0.10 # 10% reserve margin for power

##
Overrides to demonstrate the run generator ("calliope generate_runs')
##
runl:
model.subset_time: ['2005-01-01', '2005-01-31"]
run2:
model.subset_time: ['2005-02-01"', '2005-02-31']
run3:

model.subset_time: ['2005-01-01', '2005-01-31"]

locations.regionl.techs.ccgt.constraints.energy_cap_max: ® # Disallow CCGT
rund:

subset_time: ['2005-02-01", '2005-02-31']

locations.regionl.techs.ccgt.constraints.energy_cap_max: ® # Disallow CCGT

##
Overrides to demonstrate group constraints
##

cold_fusion: # Defines a hypothetical cold fusion tech to use in group constraints
techs:
cold_fusion:
essentials:
name: 'Cold fusion'
color: '#233B39'
parent: supply
carrier_out: power
constraints:
energy_cap_max: 10000
lifetime: 50
costs:
monetary:
interest_rate: 0.20
energy_cap: 100
locations.regionl.techs.cold_fusion: null
locations.region2.techs.cold_fusion: null

cold_fusion_prod_share:
group_constraints:
min_carrier_prod_share_group:
techs: ['csp', 'cold_fusion']

(continues on next page)

78 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

carrier_prod_share_min:
At least 85% of power supply must come from CSP and cold fusion.,
—together
power: 0.85

cold_fusion_cap_share:
group_constraints:
max_cap_share_group:
techs: ['csp', 'cold_fusion']
At most 20% of total energy_cap can come from CSP and cold fusion.

—together
energy_cap_share_max: 0.20
locations:
regionl:
techs:
ccgt:
constraints:

energy_cap_max: 100000 # Increased to keep model feasible

minimize_emissions_costs:
run:
objective_options:
cost_class: {'emissions': 1, 'monetary': 0}
techs:
ccgt:
costs:
emissions:
om_prod: 100 # kgC02/klih
csp:
costs:
emissions:
om_prod: 10 # kgC02/klih

maximize_utility_costs:
run:
objective_options:
cost_class: {'utility': 1 , 'monetary': 0}
sense: maximize
techs:
ccgt:
costs:
utility:
om_prod: 10 # arbitrary utility value
csp:
costs:
utility:
om_prod: 100 # arbitrary utility value

capacity_factor:
techs.ccgt.constraints.capacity_factor_min: 0.8
techs.ccgt.constraints.capacity_factor_max: 0.9

(continues on next page)

1.11. More info (reference) 79

Calliope Documentation, Release 0.6.8

(continued from previous page)

eurocalliope:

techs.battery.constraints.link_con_to_prod: [ccgt]
locations.region2.techs.ccgt.constraints.energy_cap_max: 1000

techs.yaml:

##
TECHNOLOGY DEFINITIONS
##

Note: '-start' and '-end' is used in tutorial documentation only

techs:

##
Supply
##

ccgt-start
ccgt:
essentials:
name: 'Combined cycle gas turbine'
color: '#E37A72'
parent: supply
carrier_out: power
constraints:
resource: inf
energy_eff: 0.5
energy_cap_max: 40000 # kIV

energy_cap_max_systemwide: 100000 # kiV

energy_ramping: 0.8
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per klih
ccgt-end

csp-start
csp:
essentials:
name: 'Concentrating solar power'
color: '#F9CF22'
parent: supply_plus
carrier_out: power
constraints:
storage_cap_max: 614033
energy_cap_per_storage_cap_max: 1
storage_loss: 0.002
resource: file=csp_resource.csv
resource_unit: energy_per_area

(continues on next page)

80

Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

energy_eff: 0.4
parasitic_eff: 0.9
resource_area_max: inf
energy_cap_max: 10000
lifetime: 25

costs:
monetary:
interest_rate: 0.10
storage_cap: 50
resource_area: 200
resource_cap: 200
energy_cap: 1000
om_prod: 0.002
csp-end
##
Storage
##
battery-start
battery:
essentials:
name: 'Battery storage'
color: '#3B61E3'
parent: storage
carrier: power
constraints:

energy_cap_max: 1000 # kI
storage_cap_max: inf
energy_cap_per_storage_cap_max:
energy_eff: 0.95 # 0.95 * 0.95
storage_loss: 0 # No loss over
lifetime: 25
costs:
monetary:
interest_rate: 0.10
storage_cap: 200 # USD per
battery-end

##

Demand

##

demand-start

demand_power:

essentials:

name: 'Power demand'
color: '#072486'
parent: demand
carrier: power

demand-end

##
Transmission

4
= 0.9025 round trip efficiency
time assumed

kWh storage capacity

(continues on next page)

1.11. More info (reference)

81

Calliope Documentation, Release 0.6.8

(continued from previous page)

##

transmission-start
ac_transmission:
essentials:
name: 'AC power transmission'
color: '#8465A9'
parent: transmission
carrier: power
constraints:
energy_eff: 0.85
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 200
om_prod: 0.002

free_transmission:
essentials:
name: 'Local power transmission'
color: '#6783E3'
parent: transmission
carrier: power
constraints:
energy_cap_max: inf
energy_eff: 1.0
costs:
monetary:
om_prod: 0
transmission-end

locations.yaml:

##
LOCATIONS
##
locations:
region-1-start
regionl:
coordinates: {lat: 40, lon: -2}
techs:
demand_power:
constraints:
resource: file=demand-1.csv:demand
ccgt:
constraints:
energy_cap_max: 30000 # increased to ensure no unmet_demand in first.,
—timestep
region-1-end
other-locs-start
(continues on next page)
82 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

region2:
coordinates: {lat: 40, lon: -8}
techs:
demand_power:
constraints:
resource: file=demand-2.csv:demand
battery:

regionl-1.coordinates: {lat: 41, lon: -2}
regionl-2.coordinates: {lat: 39, lon: -1}
regionl-3.coordinates: {lat: 39, lon: -2}

regionl-1, regionl-2, regionl-3:
techs:
csp:
other-locs-end

##
TRANSMISSION CAPACITIES
##

links:
links-start
regionl,region2:
techs:
ac_transmission:
constraints:
energy_cap_max: 10000
regionl,regionl-1:
techs:
free_transmission:
regionl,regionl-2:
techs:
free_transmission:
regionl,regionl-3:
techs:
free_transmission:
links-end

Urban-scale example

Available as calliope.examples.urban_scale.

1.11. More info (reference) 83

Calliope Documentation, Release 0.6.8

Model settings

model .yaml:

import: # Import other files from paths relative to this file, or absolute paths
- 'model_config/techs.yaml'
- 'model_config/locations.yaml'
- 'scenarios.yaml'

model:
name: Urban-scale example model

What version of Calliope this model is intended for
calliope_version: 0.6.8

Time series data path - can either be a path relative to this file, or an absolute.
—spath
timeseries_data_path: 'timeseries_data'

subset_time: ['2005-07-01', '2005-07-02'] # Subset of timesteps

run:
mode: plan # Choices: plan, operate

solver: chc
ensure_feasibility: true # Switching on unmet demand

bigM: 1e6 # setting the scale of unmet demand, which cannot be too high, otherwise.
—the optimisation will not converge

objective_options.cost_class: {monetary: 1}

scenarios.yaml:

##
Overrides for different example model configuratiions
##

overrides:
milp:
model .name: 'Urban-scale example model with MILP'
run.solver_options.mipgap: 0.05
techs:
chp-start
chp:
constraints:
units_max: 4
energy_cap_per_unit: 300
energy_cap_min_use: 0.2
costs:
monetary:
energy_cap: 700

(continues on next page)

84 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

purchase: 40000

chp-end
boiler-start
boiler:

costs:
monetary:
energy_cap: 35
purchase: 2000

boiler-end
heat_pipes-start
heat_pipes:

constraints:
force_asynchronous_prod_con: true

heat_pipes-end

mapbox_ready:
locations:

X1.coordinates: {lat: 51.4596158, lon: -0.1613446}
X2.coordinates: {lat: 51.4652373, lon: -0.1141548}
X3.coordinates: {lat: 51.4287016, lon: -0.1310635}
N1.coordinates: {lat: 51.4450766, lon: -0.1247183}

links:

X1,X2.techs.power_lines.distance: 10
X1,X3.techs.power_lines.distance: 5
X1,N1.techs.heat_pipes.distance: 3
N1,X2.techs.heat_pipes.distance: 3
N1,X3.techs.heat_pipes.distance: 4

operate:

run.mode: operate

run.operation:
window: 24
horizon: 48

model.subset_time: ['2005-07-01', '2005-07-10"']
locations:
X1:
techs:
chp.constraints.energy_cap_max: 300
pv.constraints.energy_cap_max: 0
supply_grid_power.constraints.energy_cap_max: 40
supply_gas.constraints.energy_cap_max: 700
X2:
techs:
boiler.constraints.energy_cap_max: 200
pv.constraints.energy_cap_max: 70
supply_gas.constraints.energy_cap_max: 250
X3:
techs:

boiler.constraints.energy_cap_max: 0
pv.constraints.energy_cap_max: 50

(continues on next page)

1.11. More info (reference)

85

Calliope Documentation, Release 0.6.8

(continued from previous page)

supply_gas.constraints.energy_cap_max: 0

links:
X1,X2.techs.power_lines.constraints.energy_cap_max: 300
X1,X3.techs.power_lines.constraints.energy_cap_max: 60
X1,N1.techs.heat_pipes.constraints.energy_cap_max: 300
N1,X2.techs.heat_pipes.constraints.energy_cap_max: 250
N1,X3.techs.heat_pipes.constraints.energy_cap_max: 320

time_masking:
model .name: 'Urban-scale example model with time masking'
model.subset_time: '2005-01'
Resample time resolution to 6-hourly
model . time:
masks:
- {function: extreme_diff, options: {tech®: demand_heat, techl: demand_
—electricity, how: max, n: 2}}
function: resample
function_options: {resolution: 6H}

techs.yaml:

##
TECHNOLOGY DEFINITIONS
##

Note: '-start' and '-end' is used in tutorial documentation only

supply_power_plus-start
tech_groups:
supply_power_plus:
essentials:
parent: supply_plus
carrier: electricity
supply_power_plus-end

techs:

##-GRID SUPPLY-##
supply-start
supply_grid_power:
essentials:
name: 'National grid import'
color: '#CSABE3'
parent: supply
carrier: electricity
constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25
costs:
monetary:

(continues on next page)

86 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

interest_rate: 0.10
energy_cap: 15
om_con: 0.1 # 10p/klih electricity price #ppt

supply_gas:
essentials:
name: 'Natural gas import'
color: '#C98AAD'
parent: supply
carrier: gas
constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap: 1
om_con: 0.025 # 2.5p/klih gas price #ppt
supply-end

##-Renewables-##
pv-start
pv:
essentials:

name: 'Solar photovoltaic power'

color: '#F9D956'

parent: supply_power_plus

constraints:

export_carrier: electricity

resource: file=pv_resource.csv:per_area # Already accounts for panel.,
—~efficiency - kWh/m2. Source: Renewables.ninja Solar PV Power - Version: 1.1 - License:.
—https://creativecommons.org/licenses/by-nc/4.0/ - Reference: https://doi.org/10.1016/j.
—energy.2016.08.060

resource_unit: energy_per_area

parasitic_eff: 0.85 # inverter losses

energy_cap_max: 250

resource_area_max: 1500

force_resource: true

resource_area_per_energy_cap: 7 # 7m2 of panels needed to fit lklip of panels

lifetime: 25

costs:
monetary:
interest_rate: 0.10
energy_cap: 1350
pv-end

Conversion
boiler-start
boiler:
essentials:
name: 'Natural gas boiler'

(continues on next page)

1.11. More info (reference) 87

Calliope Documentation, Release 0.6.8

(continued from previous page)

color: '#8E2999'
parent: conversion
carrier_out: heat
carrier_in: gas
constraints:
energy_cap_max: 600
energy_eff: 0.85
lifetime: 25
costs:
monetary:
interest_rate: 0.10
om_con: 0.004 # .4p/klih
boiler-end

Conversion_plus
chp-start
chp:
essentials:
name: 'Combined heat and power'
color: '#E4AB97'
parent: conversion_plus
primary_carrier_out: electricity
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat
constraints:
export_carrier: electricity
energy_cap_max: 1500
energy_eff: 0.405
carrier_ratios.carrier_out_2.heat: 0.8
lifetime: 25

costs:
monetary:
interest_rate: 0.10
energy_cap: 750
om_prod: 0.004 # .4p/kWh for 4500 operating hours/year
export: file=export_power.csv
chp-end

##-DEMAND - ##
demand-start
demand_electricity:
essentials:
name: 'Electrical demand'
color: '#072486'
parent: demand
carrier: electricity

demand_heat:
essentials:
name: 'Heat demand'
color: '#660507'

(continues on next page)

88 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

parent: demand
carrier: heat
demand-end

##-DISTRIBUTION-##
transmission-start
power_lines:
essentials:
name: 'Electrical power distribution'
color: '#6783E3'
parent: transmission
carrier: electricity
constraints:
energy_cap_max: 2000
energy_eff: 0.98
lifetime: 25

costs:
monetary:
interest_rate: 0.10
energy_cap_per_distance: 0.01
heat_pipes:
essentials:

name: 'District heat distribution'
color: '#823739'
parent: transmission
carrier: heat
constraints:
energy_cap_max: 2000
energy_eff_per_distance: 0.975
lifetime: 25
costs:
monetary:
interest_rate: 0.10
energy_cap_per_distance: 0.3
transmission-end

locations.yaml:

locations:
X1-start
X1:
techs:
chp:
pv:
supply_grid_power:
costs.monetary.energy_cap: 100 # cost of transformers
supply_gas:
demand_electricity:
constraints.resource: file=demand_power.csv
demand_heat:
constraints.resource: file=demand_heat.csv

(continues on next page)

1.11. More info (reference) 89

Calliope Documentation, Release 0.6.8

(continued from previous page)

available_area: 500
coordinates: {x: 2, y: 7}

X1-end
other-locs-start
X2:
techs:
boiler:
costs.monetary.energy_cap: 43.1 # different boiler costs
pv:
costs.monetary:
om_prod: -0.0203 # revenue for just producing electricity
export: -0.0491 # FIT return for PV export
supply_gas:

demand_electricity:
constraints.resource: file=demand_power.csv
demand_heat:
constraints.resource: file=demand_heat.csv
available_area: 1300
coordinates: {x: 8, y: 7}

X3:
techs:
boiler:
costs.monetary.energy_cap: 78 # different boiler costs
pv:
constraints:

energy_cap_max: 50 # changing tariff structure below 50kW
costs.monetary:
om_annual: -80.5 # reimbursement per kWip from FIT
supply_gas:
demand_electricity:
constraints.resource: file=demand_power.csv
demand_heat:
constraints.resource: file=demand_heat.csv
available_area: 900
coordinates: {x: 5, y: 3}
other-locs-end
Nl-start
N1: # location for branching heat transmission network
coordinates: {x: 5, y: 7}
N1-end

links:
links-start
X1,X2:
techs:
power_lines:
distance: 10

X1,X3:
techs:
power_lines:
X1,N1:

(continues on next page)

90 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

(continued from previous page)

techs:
heat_pipes:
N1,X2:
techs:
heat_pipes:
N1,X3:
techs:
heat_pipes:
links-end

1.11.2 Configuration reference
Configuration layout
There must always be at least one model configuration YAML file, probably called model.yaml or similar. This file
can import any number of additional files.
This file or this set of files must specify the following top-level configuration keys:
* name: the name of the model
* model: model settings
* run: run settings
* techs: technology definitions
* (optionally) tech_groups: tech group definitions
* locations: location definitions

* (optionally) 1inks: transmission link definitions

Note: Model settings (model) affect how the model and its data are built by Calliope, while run settings (run) only
take effect once a built model is run (e.g. interactively via model.run()). This means that run settings, unlike model
settings, can be updated after a model is built and before it is run, by modifying attributes in the built model dataset.

YAML configuration file format
All configuration files (with the exception of time series data files) are in the YAML format, “a human friendly data
serialisation standard for all programming languages”.

Configuration for Calliope is usually specified as option: value entries, where value might be a number, a text
string, or a list (e.g. a list of further settings).

Calliope allows an abbreviated form for long, nested settings:

one:
two:
three: x

can be written as:

1.11. More info (reference) 91

Calliope Documentation, Release 0.6.8

one.two.three: x

Calliope also allows a special import: directive in any YAML file. This can specify one or several YAML files to
import. If both the imported file and the current file define the same option, the definition in the current file takes
precedence.

Using quotation marks (' or ") to enclose strings is optional, but can help with readability. The three ways of setting
option to text below are equivalent:

option: "text"
option: 'text'
option: text

Sometimes, a setting can be either enabled or disabled, in this case, the boolean values true or false are used.

Comments can be inserted anywhere in YAML files with the # symbol. The remainder of a line after # is interpreted
as a comment.

See the YAML website for more general information about YAML.

Calliope internally represents the configuration as At trDicts, which are a subclass of the built-in Python dictionary
data type (dict) with added functionality such as YAML reading/writing and attribute access to keys.

1.11.3 Mathematical formulation

This section details the mathematical formulation of the different components. For each component, a link to the actual
implementing function in the Calliope code is given.

Note: Make sure to also refer to the detailed listing of constraints and costs along with their units and default values.

Decision variables

calliope.backend.pyomo.variables.initialize_decision_variables (backend_model)
Defines decision variables.

92 Chapter 1. User guide

http://www.yaml.org/

Calliope Documentation, Release 0.6.8

Objective functions

calliope.backend.pyomo.objective.minmax_cost_optimization(backend_model)

Variable

Dimensions

energy_cap

loc_techs

carrier_prod

loc_tech_carriers_prod, timesteps

carrier_con

loc_tech_carriers_con, timesteps

cost

costs, loc_techs_cost

resource_arca

loc_techs_area,

storage_cap

loc_techs_store

storage

loc_techs_store, timesteps

resource_con

loc_techs_supply_plus, timesteps

resource_cap

loc_techs_supply_plus

carrier_export

loc_tech_carriers_export, timesteps

cost_var costs, loc_techs_om_cost, timesteps
cost_investment | costs, loc_techs_investment_cost
purchased loc_techs_purchase

units loc_techs_milp

operating_units

loc_techs_milp, timesteps

unmet_demand

loc_carriers, timesteps

unused_supply

loc_carriers, timesteps

Minimize or maximise total system cost for specified cost class or a set of cost classes. cost_class is a string or
dictionary. If a string, it is automatically converted to a dictionary with a single key:value pair where value ==
1. The dictionary provides a weight for each cost class of interest: {cost_1: weight_1, cost_2: weight_2, etc.}.

If unmet_demand is in use, then the calculated cost of unmet_demand is added or subtracted from the total cost
in the opposite sense to the objective.

min: z = g

loc::techcost,k

maxr . 2 = E

loc::techeost,k

(cost(loc :: tech, cost = costy,) x weighty) + Z

loc::carrier,timestep

(cost(loc :: tech, cost = costy) X weighty) — Z

loc::carrier,timestep

calliope.backend.pyomo.objective.check_feasibility(backend_model)
Dummy objective, to check that there are no conflicting constraints.

Constraints

Energy Balance

min:z=1

(unmet_demand(loc :: carrier, time

(unmet_demand(loc :: carrier, time

calliope.backend.pyomo.constraints.energy_balance.system_balance_constraint_rule (backend_model,

loc_carrier,
timestep)

System balance ensures that, within each location, the production and consumption of each carrier is balanced.

1.11. More info (reference)

93

Calliope Documentation, Release 0.6.8

E carrierprod(loc :: tech :: carrier, timestep) + E carriercon(loc

loc::tech::carrierproq€loc::carrier loc::tech::carrier.on Eloc::carrier

calliope.backend.pyomo.constraints.energy_balance.balance_supply_constraint_rule (backend_model,
loc_tech,
timestep)

Limit production from supply techs to their available resource

carrierproq(loc i tech :: carrier, timestep)

min_use(loc :: tech) x available_resource(loc :: tech, timestep) < > avai

Nenergy (lOC :: tech, timestep)

If force_resource(loc :: tech) is set:

carrier loc :: tech :: carrier,timeste . .
pmd() = available_resource(loc :: tech, timestep) Vloc :: tech € loc :: techssupp

Nenergy (lOC i tech, timestep)

Where:

available_resource(loc :: tech, timestep) = resource(loc :: tech, timestep) x resource_scale(loc :: tech)

if loc :: tech is in loc :: techsSgreq:

available_resource(loc :: tech, timestep) = resource(loc :: tech, timestep) x resource_scale(loc :: tech) x resourcegnr,

calliope.backend.pyomo.constraints.energy_balance.balance_demand_constraint_rule (backend_model,
loc_tech,
timestep)

Limit consumption from demand techs to their required resource.

carriercon(loc :: tech :: carrier, timestep) X Nenergy(loc :: tech, timestep) > required_resource(loc :: tech, timestep)

If force_resource(loc :: tech) is set:

carriercon(loc :: tech :: carrier, timestep) X Nenergy(loc :: tech, timestep) = required_resource(loc :: tech, timestep)

Where:

required_resource(loc :: tech, timestep) = resource(loc :: tech, timestep) X resource_scale(loc :: tech)

if loc :: tech is in loc :: techSgreq:

required_resource(loc :: tech, timestep) = resource(loc :: tech, timestep) x resource_scale(loc :: tech) X resourcegyre

94 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

calliope.backend.pyomo.constraints.energy_balance.resource_availability_supply_plus_constraint_rule (bac}

loc_

time
Limit production from supply_plus techs to their available resource.

TeS0UTCecon (loc :: tech, timestep) < available_resource(loc :: tech, timestep)

Vioc :: tech € loc :: techsgyppiy+, Viime
If force_resource(loc :: tech) is set:

resourcecon(loc :: tech, timestep) = available_resource(loc :: tech, timestep) Vloc :: tech € loc :: techs syppiy+ , Vtime
Where:

available_resource(loc :: tech, timestep) = resource(loc :: tech, timestep) X resourcesecqc(loc :: tech)

if loc :: tech is in loc :: techsSgreq:

available_resource(loc :: tech, timestep) = resource(loc :: tech, timestep) X resourcescqe(loc :: tech) X resourceqreq (I

calliope.backend.pyomo.constraints.energy_balance.balance_transmission_constraint_rule (backend_model,

loc_tech,
timestep)
Balance carrier production and consumption of transmission technologies

—1 % carriercon (l0crom = tech : locy, i carrier, timestep) X Nepergy(loc :: tech, timestep) = carrierpyoq(locy, :: tech

Where a link is the connection between locy,.onm, :: tech : loci, and loc, :: tech : locyom for locations to and
from.

calliope.backend.pyomo.constraints.energy_balance.balance_supply_plus_constraint_rule (backend_model,

loc_tech,

timestep)
Balance carrier production and resource consumption of supply_plus technologies alongside any use of resource
storage.

storage(loc :: tech, timestep) = storage(loc :: tech, timestepyrevious) x (1 — storage_loss(loc :: tech, timestep)) ™t

If no storage is defined for the technology, this reduces to:

.) carriery, od(loc :: tech :: carrier, time
resourcecon(loc :: tech, timestep) X Nyresource(lOC :: tech, timestep) = prod(!

Nenergy (lOC :: tech, timestep) X Nparasitic(loc :: te

1.11. More info (reference) 95

Calliope Documentation, Release 0.6.8

calliope.backend.pyomo.constraints.energy_balance.balance_storage_constraint_rule (backend_model,
loc_tech,
timestep)
Balance carrier production and consumption of storage technologies, alongside any use of the stored volume.

storage(loc :: tech, timestep) = storage(loc :: tech, timestepyrevious) % (1 — storage_loss(loc :: tech, timestep)) 5!

calliope.backend.pyomo.constraints.energy_balance.balance_storage_inter_cluster_rule(backend_model,
loc_tech,
dat-
estep)
When clustering days, to reduce the timeseries length, balance the daily stored energy across all days of the
original timeseries.

Ref: DOI 10.1016/j.apenergy.2018.01.023

storage;nter_cluster(l0C :: tech, datestep) = storage;nter_cluster(loC :: tech, datestepprevious) X (1 — storage_loss(loc

Where timestep final,cluster(datestepprevions)) 1S the final timestep of the cluster in the clustered timeseries cor-
responding to the previous day

calliope.backend.pyomo.constraints.energy_balance.storage_initial_rule (backend_model,
loc_tech)
If storage is cyclic, allow an initial storage to still be set. This is applied to the storage of the final timestep/datestep
of the series as that, in cyclic storage, is the ‘storage_previous_step’ for the first timestep/datestep.

If clustering and storage_inter_cluster exists:

storage;nter_cluster(l0c :: tech, datestepring) X ((1 — storagejoss) x ¥24) = storage;nitial(loc :: tech) X storagecqp(loc

Where datestepsina is the last datestep of the timeseries

Else: .. container:: scrolling-wrapper

storage(loc :: tech, timestep rina) X ((1 — storagejoss) * x24) = storage;niriqr(loc :: tech) x storagecqp(loc :: tech

Where timestep inq is the last timestep of the timeseries

Capacity

calliope.backend.pyomo.constraints.capacity.storage_capacity_constraint_rule(backend_model,

loc_tech)
Set maximum storage capacity. Supply_plus & storage techs only

The first valid case is applied:

= Storagecap,equals(loc :: tech), if storagecap equats(loc :: tech)
storagecap(loc :: tech) < < storagecap,maz(loc :: tech), if storagecap maz(loc :: tech) Vloc :: tech € loc :: techssiore

unconstrained, otherwise

96 Chapter 1. User guide

https://doi.org/10.1016/j.apenergy.2018.01.023

Calliope Documentation, Release 0.6.8

and (if equals not enforced):

storagecqp(loc :: tech) > storagecap min(loc :: tech) Vloc :: tech € loc :: techssiore

calliope.backend.pyomo.constraints.capacity.energy_capacity_storage_constraint_rule_old(backend_model,
loc_tech)
Set an additional energy capacity constraint on storage technologies, based on their use of charge_rate.

This is deprecated and will be removed in Calliope 0.7.0. Instead of charge_rate, please use en-
ergy_cap_per_storage_cap_max.

energycap(loc :: tech) < storagecqp(loc :: tech) x charge_rate(loc :: tech) Yloc :: tech € loc :: techSsiore

calliope.backend.pyomo.constraints.capacity.energy_capacity_storage_min_constraint_rule (backend_model,
loc_tech)
Limit energy capacities of storage technologies based on their storage capacities.

energycap(loc :: tech) > storagecqp(loc :: tech) x energy_cap_per_storage_cap_min(loc :: tech)

Vioc :: tech € loc :: techSgiore

calliope.backend.pyomo.constraints.capacity.energy_capacity_storage_max_constraint_rule(backend_model,
loc_tech)
Limit energy capacities of storage technologies based on their storage capacities.

energycaqp(loc :: tech) < storagecqp(loc :: tech) x energy_cap_per_storage_cap_max(loc :: tech)

Vloc :: tech € loc :: techssiore

calliope.backend.pyomo.constraints.capacity.energy_capacity_storage_equals_constraint_rule (backend_model.
loc_tech)
Limit energy capacities of storage technologies based on their storage capacities.

energycap(loc :: tech) = storagecap(loc :: tech) x energy_cap_per_storage_cap_equals(loc :: tech)¥loc :: tech € loc ::

calliope.backend.pyomo.constraints.capacity.resource_capacity_constraint_rule(backend_model,
loc_tech)
Add upper and lower bounds for resource_cap.

The first valid case is applied:

= 1eSOUTCecqp,equals (lOC 2 tech), if resourcecep. equais(loc :: tech)
resourcecqp(loc :: tech) § < resourcecapmaz(loc :: tech), — if resourcecap max(loc :: tech) Vloc :: tech € loc :: techsy

unconstrained, otherwise

and (if equals not enforced):

TesouTcecqp(loc :: tech) > resourcecap,min(loc :: tech) Yloc :: tech € loc :: techs finite_resource_supply_plus

1.11. More info (reference) 97

Calliope Documentation, Release 0.6.8

calliope.backend.pyomo.constraints.capacity.resource_capacity_equals_energy_capacity_constraint_rule(ba
loc
Add equality constraint for resource_cap to equal energy_cap, for any technologies which have defined re-
source_cap_equals_energy_cap.

resourcecqp(loc :: tech) = energycap(loc :: tech) Vloc :: tech € loc :: techs finite_resource_supply_pius if resource_cap_

calliope.backend.pyomo.constraints.capacity.resource_area_constraint_rule(backend_model,
loc_tech)
Set upper and lower bounds for resource_area.

The first valid case is applied:

= TeSOUTCeareq,equals(lOC 2 tech), if resourceqreq equals(loc :: tech)
TeSOUTCeqgreq(loC 2 tech) ¢ < resourcegrea,max(loc it tech), if resourceqreq maz(loc :: tech) Vloc :: tech € loc :: tec

unconstrained, otherwise

and (if equals not enforced):

TESOUTCeqgreq (lOC 1 tech) > Tesourcegreq,min(loc it tech) Vloc :: tech € loc :: techsgreq

calliope.backend.pyomo.constraints.capacity.resource_area_per_energy_capacity_constraint_rule(backend_mc
loc_tech)
Add equality constraint for resource_area to equal a percentage of energy_cap, for any technologies which have
defined resource_area_per_energy_cap

TESOUTCeqgreq(loC 1 tech) = energycap(loc :: tech) x area_per_energy_cap(loc :: tech) Yloc :: tech € locs :: techsgyre

calliope.backend.pyomo.constraints.capacity.resource_area_capacity_per_loc_constraint_rule (backend_model,

loc)
Set upper bound on use of area for all locations which have available_area constraint set. Does not consider
resource_area applied to demand technologies
Z TeSOUTCeqreq(loc :: tech) < available_area Vloc € locs if available_area(loc)
tech
calliope.backend.pyomo.constraints.capacity.energy_capacity_constraint_rule (backend_model,
loc_tech)
Set upper and lower bounds for energy_cap.
The first valid case is applied:
= energyYcap,equals(loc 2 tech), if energycap equals(loc :: tech)
energycap(loc :: tech)]
< energycap,maz(loc :: tech), if energyecap mas(loc :: tech) Vloc :: tech € loc :: techs

energyYcap,scale(loc :: tech) : !
unconstrained, otherwise

98 Chapter 1. User guide

Calliope Documentation, Release 0.6.8

and (if equals not enforced):

energycap(loc :: tech)

> energycap,min(loc :: tech) Vloc :: tech € loc :: techs
eneryyYcap,scale(loc :: tech)

calliope.backend.pyomo.constraints.capacity.energy_capacity_systemwide_constraint_rule(backend_model,
tech)
Set constraints to limit the capacity of a single technology type across all locations in the model.

The first valid case is applied:

= ENETJYcap,equals,systemwide (lOC o tECh)a if ENETGYcap,equals,systemwide (lOC o tECh)

Z energycap(loc :: tech) < < energycap mas,systemwide (loc :: tech), if energycap mas,systemwide (loc :: tech) Vtech ¢
loc unconstrained, otherwise
Dispatch

calliope.backend.pyomo.constraints.dispatch.carrier_production_max_constraint_rule(backend_model,
loc_tech_carrier,
timestep)
Set maximum carrier production. All technologies.

carrierprod(loc :: tech :: carrier, timestep) < energycqp(loc :: tech) x timestep_resolution(timestep) x parasitic_ef f

calliope.backend.pyomo.constraints.dispatch.carrier_production_min_constraint_rule(backend_model,
loc_tech_carrier,
timestep)
Set minimum carrier production. All technologies except conversion_plus.

carrierprod(loc :: tech :: carrier, timestep) > energycap(loc :: tech) x timestep_resolution(timestep) X energycap min

calliope.backend.pyomo.constraints.dispatch.carrier_consumption_max_constraint_rule(backend_model,
loc_tech_carrier,
timestep)
Set maximum carrier consumption for demand, storage, and transmission techs.

carriercon(loc :: tech :: carrier, timestep) > —1 X energycqp(loc :: tech) x timestep_resolution(timestep)

calliope.backend.pyomo.constraints.dispatch.resource_max_constraint_rule(backend_model,
loc_tech, timestep)
Set maximum resource consumed by supply_plus techs.

resourcecon(loc :: tech, timestep) < timestep_resolution(timestep) X resourcecqp(loc :: tech)

1.11. More info (reference) 929

Calliope Documentation, Release 0.6.8

calliope.backend.pyomo.constraints.dispatch.storage_max_constraint_rule(backend_model,
loc_tech, timestep)
Set maximum stored energy. Supply_plus & storage techs only.

storage(loc :: tech, timestep) < storage.qp(loc :: tech)

calliope.backend.pyomo.constraints.dispatch.storage_discharge_depth_constraint_rule(backend_model,
loc_tech,
timestep)
Forces storage state of charge to be greater than the allowed depth of discharge.

storage(loc :: tech, timestep) >= storageqischargeqepth¥loc :: tech € loc :: techssiorage, Vtimestep € timesteps

calliope.backend.pyomo.constraints.dispatch.ramping_up_constraint_rule (backend_model,
loc_tech_carrier