
Calliope Documentation
Release 0.6.0

Stefan Pfenninger

Apr 20, 2018

Contents

1 User guide 3
1.1 Introduction . 3
1.2 Download and installation . 5
1.3 New in v0.6.0 . 6
1.4 Building a model . 19
1.5 Running a model . 24
1.6 Analysing a model . 29
1.7 Tutorials . 31
1.8 More info . 45
1.9 Development guide . 95

2 API documentation 99
2.1 API Documentation . 99
2.2 Index . 105

3 Release history 107
3.1 Release History . 107

4 License 115

Bibliography 117

Python Module Index 119

i

ii

Calliope Documentation, Release 0.6.0

v0.6.0 (Release history)

This is the documentation for version 0.6.0. See the main project website for contact details and other useful informa-
tion.

Calliope focuses on flexibility, high spatial and temporal resolution, the ability to execute many runs based on the
same base model, and a clear separation of framework (code) and model (data).

A model based on Calliope consists of a collection of text files (in YAML and CSV formats) that define the technolo-
gies, locations and resource potentials. Calliope takes these files, constructs an optimisation problem, solves it, and
reports results in the form of xarray Datasets which in turn can easily be converted into Pandas data structures, for
easy analysis with Calliope’s built-in tools or the standard Python data analysis stack.

Calliope’s built-in tools allow interactive exploration of results, as shown in the following example of a model that
includes three energy carriers (electricity, heat, and gas):

Calliope is developed in the open on GitHub and contributions are very welcome (see the Development guide). See
the list of open issues and planned milestones for an overview of where development is heading, and join us on Gitter
to ask questions or discuss code.

Key features of Calliope include:

• Model specification in an easy-to-read and machine-processable YAML format

• Generic technology definition allows modelling any mix of production, storage and consumption

• Resolved in space: define locations with individual resource potentials

• Resolved in time: read time series with arbitrary resolution

• Able to run on high-performance computing (HPC) clusters

• Uses a state-of-the-art Python toolchain based on Pyomo, xarray, and Pandas

• Freely available under the Apache 2.0 license

Contents 1

http://www.callio.pe/
http://xarray.pydata.org/en/stable/
http://pandas.pydata.org/
https://github.com/calliope-project/calliope
https://github.com/calliope-project/calliope/issues
https://github.com/calliope-project/calliope/milestones
https://gitter.im/calliope-project/calliope
https://software.sandia.gov/trac/coopr/wiki/Pyomo
http://xarray.pydata.org/
http://pandas.pydata.org/

Calliope Documentation, Release 0.6.0

2 Contents

CHAPTER 1

User guide

1.1 Introduction

The basic process of modelling with Calliope is based on three steps:

1. Create a model from scratch or by adjusting an existing model (Building a model)

2. Run your model (Running a model)

3. Analyse and visualise model results (Analysing a model)

1.1.1 Energy system models

Energy system models allow analysts to form internally coherent scenarios of how energy is extracted, converted,
transported, and used, and how these processes might change in the future. These models have been gaining renewed
importance as methods to help navigate the climate policy-driven transformation of the energy system.

Calliope is an attempt to design an energy system model from the ground of up with specific design goals in mind
(see below). Therefore, the model approach and data format layout may be different from approaches used in other
models. The design of the nodes approach used in Calliope was influenced by the power nodes modelling framework
by [Heussen2010].

Calliope was designed to address questions around the transition to renewable energy, so there are tools that are likely
to be more suitable for other types of questions. In particular, the following related energy modelling systems are
available under open source or free software licenses:

• SWITCH: A power system model focused on renewables integration, using multi-stage stochastic linear opti-
misation, as well as hourly resource potential and demand data. Written in the commercial AMPL language and
GPL-licensed [Fripp2012].

• Temoa: An energy system model with multi-stage stochastic optimisation functionality which can be de-
ployed to computing clusters, to address parametric uncertainty. Written in Python/Pyomo and AGPL-licensed
[Hunter2013].

3

http://switch-model.org/
http://temoaproject.org/

Calliope Documentation, Release 0.6.0

• OSeMOSYS: A simplified energy system model similar to the MARKAL/TIMES model families, which can
be used as a stand-alone tool or integrated in the LEAP energy model. Written in GLPK, a free subset of the
commercial AMPL language, and Apache 2.0-licensed [Howells2011].

Additional energy models that are partially or fully open can be found on the Open Energy Modelling Initiative’s wiki.

1.1.2 Rationale

Calliope was designed with the following goals in mind:

• Designed from the ground up to analyze energy systems with high shares of renewable energy or other variable
generation

• Formulated to allow arbitrary spatial and temporal resolution, and equipped with the necessary tools to deal with
time series input data

• Allow easy separation of model code and data, and modular extensibility of model code

• Make models easily modifiable, archiveable and auditable (e.g. in a Git repository), by using well-defined and
human-readable text formats

• Simplify the definition and deployment of large numbers of model runs to high-performance computing clusters

• Able to run stand-alone from the command-line, but also provide an API for programmatic access and embed-
ding in larger analyses

• Be a first-class citizen of the Python world (installable with conda and pip, with properly documented and
tested code that mostly conforms to PEP8)

• Have a free and open-source code base under a permissive license

1.1.3 Acknowledgments

Initial development was partially funded by the Grantham Institute at Imperial College London and the European
Institute of Innovation & Technology’s Climate-KIC program.

1.1.4 License

Calliope is released under the Apache 2.0 license, which is a permissive open-source license much like the MIT or
BSD licenses. This means that Calliope can be incorporated in both commercial and non-commercial projects.

Copyright 2013-2018 Calliope contributors listed in AUTHORS

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

4 Chapter 1. User guide

http://www.osemosys.org/
http://www.energycommunity.org/LEAP/
http://wiki.openmod-initiative.org/wiki/Model_fact_sheets
http://www.imperial.ac.uk/grantham
http://www.climate-kic.org

Calliope Documentation, Release 0.6.0

1.1.5 References

1.2 Download and installation

1.2.1 Requirements

Calliope has been tested on Linux, macOS, and Windows.

Running Calliope requires four things:

1. The Python programming language, version 3.6 or higher.

2. A number of Python add-on modules (see below for the complete list).

3. A solver: Calliope has been tested with GLPK, CBC, Gurobi, and CPLEX. Any other solver that is compatible
with Pyomo should also work.

4. The Calliope software itself.

1.2.2 Recommended installation method

The easiest way to get a working Calliope installation is to use the free conda package manager, which can install all
of the four things described above in a single step.

To get conda, download and install the “Miniconda” distribution for your operating system (using the version for
Python 3).

With Miniconda installed, you can create a new Python 3.6 environment called "calliope" with all the neces-
sary modules, including the free and open source GLPK solver, by running the following command in a terminal or
command-line window:

$ conda create -c conda-forge -n calliope python=3.6 calliope

To use Calliope, you need to activate the calliope environment each time. On Linux and macOS:

$ source activate calliope

On Windows:

$ activate calliope

You are now ready to use Calliope together with the free and open source GLPK solver. Read the next section for
more information on alternative solvers.

1.2.3 Solvers

You need at least one of the solvers supported by Pyomo installed. CPLEX or Gurobi are recommended for large
problems, and have been confirmed to work with Calliope. Refer to the documentation of your solver on how to install
it.

GLPK

GLPK is free and open-source, but can take too much time and/or too much memory on larger problems. If using
the recommended installation approach above, GLPK is already installed in the calliope environment. To install
GLPK manually, refer to the GLPK website.

1.2. Download and installation 5

https://conda.io/miniconda.html
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

Calliope Documentation, Release 0.6.0

CBC

CBC is another free and open-source option. CBC can be installed via conda on Linux and macOS by running conda
install -c conda-forge coincbc. Windows binary packages and further documentation are available at
the CBC website.

Gurobi

Gurobi is commercial but significantly faster than GLPK and CBC, which is relevant for larger problems. It needs a
license to work, which can be obtained for free for academic use by creating an account on gurobi.com.

While Gurobi can be installed via conda (conda install -c gurobi gurobi) we recommend downloading
and installing the installer from the Gurobi website, as the conda package has repeatedly shown various issues.

After installing, log on to the Gurobi website and obtain a (free academic or paid commercial) license, then activate it
on your system via the instructions given online (using the grbgetkey command).

CPLEX

Another commercial alternative is CPLEX. IBM offer academic licenses for CPLEX. Refer to the IBM website for
details.

1.2.4 Python module requirements

Refer to requirements/base.yml in the Calliope repository for a full and up-to-date listing of required third-party
packages.

Some of the key packages Calliope relies on are:

• Pyomo

• Pandas

• Xarray

• Plotly

• Jupyter (optional, but highly recommended, and used for the example notebooks in the tutorials)

1.3 New in v0.6.0

Version 0.6 is backwards incompatible with version 0.5. If you are familiar with how Calliope functions then this page
will act as a reference for moving to version 0.6.

1.3.1 Converting a 0.5.x model to 0.6.0

Version 0.6 provides a conversion script to models created with Calliope 0.5 into 0.6-compatible models:

calliope convert run.yaml model.yaml output_dir

6 Chapter 1. User guide

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
https://www.gurobi.com/
https://www.gurobi.com/
https://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/calliope-project/calliope/blob/master/requirements/base.yml
https://www.pyomo.org/
http://pandas.pydata.org/
http://xarray.pydata.org/
https://plot.ly/
https://jupyter.org/

Calliope Documentation, Release 0.6.0

run.yaml and model.yaml are the main run and model configuration files of the 0.5 model to be converted, while
output_dir is a directory into which the converted model will be saved.

The file structure of the input model is preserved (all YAML and CSV input files and their folder structure), but all
information from the run configuration file is merged into the main model configuration file.

Time series are handled by the script: the set_t.csv required in Calliope 0.5 models is removed, with the time step
information inserted directly into each of the remaining time series CSV files.

The conversion script has some important limitations:

• Comments in YAML files are lost

• Parallel run configurations are not converted to the new override group configuration format

• The group_fraction constraint is not converted, as its formulation has changed substantially in 0.6.0

• carrier_ratios are not converted

• Operational mode configuration is not converted

Functionality which is not converted, has been removed in version 0.6.0, or keys not known to the script, are moved
into a __disabled key in the output YAML files, so they remain visible for the user to remove or to manually
convert if needed.

The script also adds interest_rate and lifetime for each technology, using the implicit default values from
Calliope 0.5 (25 years lifetime, a 0.10 interest rate for the monetary cost class and 0 for other cost classes).

See also:

0.6.0 model configuration changes

This page lists the full contents of calliope/config/conversion_0.6.0.yaml, which documents the
changes in model configuration from 0.5.x to 0.6.0:

Structure of this file:
Each major section of model / run configuration has its own top-level key.
Within each top-level section, changes are given as ``old name: new name``,
and if the specific setting has been removed, the new name is ``null``,
possibly with a comment indicating

run_config:
import: null # use import statements in model configuration file instead
subset_y: null
subset_x: null
subset_t: model.subset_time
solver: run.solver
solver_options: run.solver_options
name: null
model: null # since there is no separate run configuration file any more, there

→˓is no need to specify a model configuration file
mode: run.mode
output.format: null
output.path: null
debug.keep_temp_files: run.save_logs
debug.symbolic_solver_labels: null
override: null # now achieved with override groups, see override.yaml in examples
parallel: null
random_seed: model.random_seed
debug: null # no longer available

(continues on next page)

1.3. New in v0.6.0 7

Calliope Documentation, Release 0.6.0

(continued from previous page)

model_config:
opmode: null
startup_time: null
name: model.name
data_path: model.timeseries_data_path
objective: null # custom objective not implemented yet
constraints: null # custom constraints not implemented yet
system_margin: model.reserve_margin
group_fraction: null # major change to structure of this constraint, not

→˓automatically converted
metadata: null ### SPECIAL LOGIC: move coordinates over to location configuration

tech_config:
parent: essentials.parent
group: null # Use tech_groups to specify groups
name: essentials.name
stack_weight: null # stack_weight is no longer supported
color: essentials.color
x_map: null # now achieved by directly specifying file=filename.csv:column
carrier: essentials.carrier
primary_carrier: essentials.primary_carrier
carrier_in: essentials.carrier_in # If conversion_plus, now a list of carrier

→˓names. Ratios between carriers found in constraints.carrier_ratios
carrier_in_2: essentials.carrier_in_2 # If conversion_plus, now a list of carrier

→˓names. Ratios between carriers found in constraints.carrier_ratios
carrier_in_3: essentials.carrier_in_3 # If conversion_plus, now a list of carrier

→˓names. Ratios between carriers found in constraints.carrier_ratios
carrier_out: essentials.carrier_out # If conversion_plus, now a list of carrier

→˓names. Ratios between carriers found in constraints.carrier_ratios
carrier_out_2: essentials.carrier_out_2 # If conversion_plus, now a list of

→˓carrier names. Ratios between carriers found in constraints.carrier_ratios
carrier_out_3: essentials.carrier_out_3 # If conversion_plus, now a list of

→˓carrier names. Ratios between carriers found in constraints.carrier_ratios
export: constraints.export_carrier
constraints.r: constraints.resource
constraints.force_r: constraints.force_resource
constraints.r_unit: constraints.resource_unit
constraints.r_eff: constraints.resource_eff
constraints.r_area.min: constraints.resource_area_min
constraints.r_area.max: constraints.resource_area_max
constraints.r_area.equals: constraints.resource_area_equals
constraints.r_area_per_e_cap: constraints.resource_area_per_energy_cap
constraints.r_cap.min: constraints.resource_cap_min
constraints.r_cap.max: constraints.resource_cap_max
constraints.r_cap.equals: constraints.resource_cap_equals
constraints.r_cap_equals_e_cap: constraints.resource_cap_equals_energy_cap
constraints.r_scale: constraints.resource_scale
constraints.r_scale_to_peak: constraints.resource_scale_to_peak
constraints.s_init: constraints.storage_initial
constraints.s_cap.min: constraints.storage_cap_min
constraints.s_cap.max: constraints.storage_cap_max
constraints.s_cap.equals: constraints.storage_cap_equals
constraints.s_cap_per_unit: constraints.storage_cap_per_unit
constraints.c_rate: constraints.charge_rate

(continues on next page)

8 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

constraints.s_time.max: null
constraints.use_s_time: null
constraints.s_loss: constraints.storage_loss
constraints.e_prod: constraints.energy_prod
constraints.e_con: constraints.energy_con
constraints.p_eff: constraints.parasitic_eff
constraints.e_eff: constraints.energy_eff
constraints.e_eff_per_distance: constraints.energy_eff_per_distance
constraints.e_cap.min: constraints.energy_cap_min
constraints.e_cap.max: constraints.energy_cap_max
constraints.e_cap.equals: constraints.energy_cap_equals
constraints.e_cap_total.max: constraints.energy_cap_max_systemwide
constraints.e_cap_total.equals: constraints.energy_cap_equals_systemwide
constraints.e_cap_scale: constraints.energy_cap_scale
constraints.e_cap.min_use: constraints.energy_cap_min_use
constraints.e_cap_min_use: constraints.energy_cap_min_use
constraints.e_cap_per_unit: constraints.energy_cap_per_unit
constraints.e_ramping: constraints.energy_ramping
constraints.export_cap: constraints.export_cap
constraints.export_carrier: constraints.export_carrier
constraints.units.min: constraints.units_min
constraints.units.max: constraints.units_max
constraints.units.equals: constraints.units_equals
constraints.r_scale_to_peak: null
constraints.allow_r2: null
constraints.r2_startup_only: null
constraints.r2_eff: null
constraints.r2_cap.min: null
constraints.r2_cap.max: null
constraints.r2_cap.equals: null
constraints.r2_cap_follow: null
constraints.r2_cap_follow_mode: null
constraints.s_time.max: null
weight: null
per_distance: null

tech_constraints_per_distance_config:
e_loss: constraints.energy_eff_per_distance

tech_costs_config:
s_cap: storage_cap
r_area: resource_area
r_cap: resource_cap
r2_cap: null
e_cap: energy_cap
om_frac: om_annual_investment_fraction
om_fixed: om_annual
om_var: om_prod
om_fuel: om_con
export: export
purchase: purchase

tech_costs_per_distance_config:
e_cap: energy_cap_per_distance

(continues on next page)

1.3. New in v0.6.0 9

Calliope Documentation, Release 0.6.0

(continued from previous page)

location_config:
override: techs
techs: null # List as keys of the subdict 'techs'
within: null

###

depreciation_config: # manually processed in convert.py, listed here for completeness
plant_life: constraints.lifetime
interest: costs.{cost_class}.interest_rate

1.3.2 Removed functionality

If you require any of the removed functionality, we recommend you open an issue on GitHub for it to be built into a
later revision of 0.6.

Technology constraints

• s_time (providing a minimum/maximum/exact time of stored energy available for discharge) no longer exists.
This constraint was relatively unpredictable in its effects when providing any combination of s_cap, e_cap,
c_rate and time clustering.

• The variable r2 (providing a secondary resource that could be used by a supply/supply_plus technology), along
with all its constraints, have been removed. To utilise multiple resource inputs, conversion_plus can be used
instead.

• r_scale_to_peak (allowing a user to provide a value for the peak resource to which the entire time series would
be scaled accordingly) has been removed. resource_scale (previously r_scale) can still be used for scaling
resource values by the given scale factor.

• weight (giving a technology a disproportionate weight in the objective function calculation) has been removed.

Custom objectives

The ability to load additional constraints or objectives has been removed. It is still possible to define a custom objective,
but to load it, a modeller needs to use a development installation of Calliope and load the function manually.

See also:

Development guide

1.3.3 Updated functionality

Verbosity

Almost all sets, constraints, costs, and variables have been updated to be more verbose, making models more readable.
The primary updates are:

10 Chapter 1. User guide

https://github.com/calliope-project/calliope/issues

Calliope Documentation, Release 0.6.0

Sets

• y -> techs

• x -> locs

• c -> carriers

• k -> costs

Constraints/Costs

• e -> energy, e.g. e_cap -> energy_cap

• r -> resource, e.g. r_cap -> resource_cap

• s -> storage, e.g. s_cap -> storage_cap

• c_rate -> charge_rate

• p_eff -> parasitic_eff

Variables

• r -> resource_con: an output from the model giving how much of a resource was consumed

• r -> resource: the available resource as an input parameter to the model

• c_prod/c_con -> carrier_prod/carrier_con: The produced/consumed carrier energy in each time storage_cap

Model and run configuration

run.yaml no longer exists. Instead, all information needed to run a model is now stored in model.yaml under the
headings model and run.

run only contains information about the solver: which one to use and any specific solver options to apply.

model contains all other information: time subsetting, model mode, output format, parallel runs, and time clustering.

To solve a model, point to the model.yaml file, e.g.: calliope run path/to/model.yaml.

Overrides

Overrides are no longer applied within run.yaml (or even model.yaml). Instead, overrides are grouped and placed into
a separate YAML file, called for example overrides.yaml.

Each group defines any number of overrides to the technology, location, link, model, or run definitions. One or several
such groups can then be applied when solving a model, e.g.:

overrides.yaml:

higher_costs:
techs.ccgt.costs.monetary.energy_cap: 10
locations.region2.techs.csp.costs.monetary.energy_cap: 100

winter:
model.subset_time: ['2005-01-01', '2005-02-28']

Running in the command line:

1.3. New in v0.6.0 11

Calliope Documentation, Release 0.6.0

calliope run model.yaml --override_file=overrides.yaml:higher_costs

calliope run model.yaml --override_file=overrides.yaml:higher_costs,winter

Running interactively:

only apply the 'higher_costs' override group
model = calliope.Model(

'model.yaml',
override_file='overrides.yaml:higher_costs'

)

apply both the 'higher_costs' and 'winter' override groups
model2 = calliope.Model(

'model.yaml',
override_file='overrides.yaml:higher_costs,winter'

)

As in version 0.5, overrides can be applied when creating a Model object, via the argument override_dict. A dictionary
can then be given:

higher_costs = {
'techs.ccgt.costs.monetary.energy_cap': 10,
'locations.region2.techs.csp.costs.monetary.energy_cap': 100

}

model = calliope.Model('model.yaml', override_dict=higher_costs)

Parallel runs

Building on the simplified way to define overrides (see above) and on lessons learnt during the development of Calliope
so far, the functionality to generate multiple runs to run either on a single machine or in parallel on a high-performance
cluster has been greatly simplified and improved.

See also:

Generating scripts to run a model many times

Location and technology subsets

In model configuration, subset_x and subset_y (subsetting the used locations and technologies, respectively) no longer
exist. subset_t, now called subset_time, does still exist.

To remove specific technologies or locations from a model, the new and much more powerful exists option can be
used.

See also:

Removing techs, locations and links

Technology definition

A technology is now defined in three parts: essentials, constraints, and costs. All top-level definitions (parent, car-
rier_out, etc.) are now given under essentials and cannot be defined per-location – they are defined only once for a

12 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

given technology and apply model-wide. Both constraints and costs remain the same as in 0.5, but with more verbose
naming:

Old:

supply_grid_power:
name: 'National grid import'
parent: supply
carrier: power
constraints:

r: inf
e_cap.max: 2000

costs:
monetary:

e_cap: 15
om_fuel: 0.1

New:

supply_grid_power:
essentials:

name: 'National grid import'
parent: supply
carrier: electricity

constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 15
om_con: 0.1

Carrier ratios and export carriers have also been moved from essentials into constraints:

Old:

chp:
name: 'Combined heat and power'
stack_weight: 100
parent: conversion_plus
export: true
primary_carrier: power
carrier_in: gas
carrier_out: power
carrier_out_2:

heat: 0.8
constraints:

e_cap.max: 1500
e_eff: 0.405

costs:
monetary:

e_cap: 750
om_var: 0.004
export: file=export_power.csv

New:

1.3. New in v0.6.0 13

Calliope Documentation, Release 0.6.0

chp:
essentials:

name: 'Combined heat and power'
parent: conversion_plus
primary_carrier: electricity
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat

constraints:
export_carrier: electricity
energy_cap_max: 1500
energy_eff: 0.405
carrier_ratios.carrier_out_2.heat: 0.8
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 750
om_prod: 0.004
export: file=export_power.csv

Per distance constraints and costs have now been incorporated under the constraints and costs keys, with a
‘_per_distance’ suffix:

Old:

heat_pipes:
name: 'District heat distribution'
parent: transmission
carrier: heat
constraints:

e_cap.max: 2000
constraints_per_distance:

e_loss: 0.025
costs_per_distance:

monetary:
e_cap: 0.3

New:

heat_pipes:
essentials:

name: 'District heat distribution'
parent: transmission
carrier: heat

constraints:
energy_cap_max: 2000
energy_eff_per_distance: 0.975
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap_per_distance: 0.3

14 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Interest rates and life times

As seen in the above examples, technology lifetime and interest rate must now be defined for each technology, under
costs. In version 0.5, technologies not defining these would silently use implicit default values of 0.10 for interest rate
and 25 years for life time. Setting these explicitly for any technology which has investment costs (i.e. those which are
not om_. . . or export) is now mandatory; no default values exist any more.

Location definition

In version 0.5, location definitions included a list of technologies to permit at that location(s). An additional overrides
key permitted per-location changes to model-wide technology definitions.

In 0.6, “overriding” refers only to model-wide overrides applied as described above. At each location, techs simply
lists all allowed technologies and any possible changes to model-wide configuration values to apply at this location
only, as shown below:

Old:

locations:
region1:

techs: [ccgt, csp]
overrides:

ccgt:
constraints:

energy_cap: 100

New:

locations:
region1:

techs:
ccgt:

constraints:
energy_cap: 100

Note that csp must be listed to be permitted here,
even though it has no location-specific configuration.
csp:

Loading time series data from CSV files

x_map (mapping a technology name to a column in a CSV file) has been removed. Instead, a user can define the time
series file column when defining the file name, separated from the file name by a :. If no column name is provided,
Calliope will look for a column with the location name.

Old:

will look for the column `demand` in the file `demand_heat_r.csv`
locations:

region1:
techs: [demand_power]

overrides:
demand_power:

x_map: demand
constraints:

r: file

1.3. New in v0.6.0 15

Calliope Documentation, Release 0.6.0

New:

will look for the column `demand` in the file `demand_heat_r.csv`
locations:

region1:
techs:

demand_power:
constraints:

resource: file=demand_heat.csv:demand

Link definition

Links have remained much the same as before. However, there is a slightly different structure in defining technologies,
bringing the definition of link technologies more in line with the rest of the model configuration format.

Old:

links:
region1,region2:

ac_transmission:
constraints:

e_cap: 1000

New:

links:
region1,region2:

techs:
ac_transmission:

constraints:
energy_cap: 1000

Location metadata

Location coordinates, previously given under the metadata key, are now given directly per location:

Old:

metadata:
metadata given in cartesian coordinates, not lat, lon.
map_boundary:

lower_left:
x: 0
y: 0

upper_right:
x: 1
y: 1

location_coordinates:
region1: {x: 2, y: 7}
region2: {x: 8, y: 7}

New:

locations:
region1:

(continues on next page)

16 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

techs:
ccgt:
csp:

coordinates: {x: 2, y: 7}
region2:

techs:
demand_power:

coordinates: {x: 8, y: 7}

group_share constraint

The group_fraction constraint is now called group_share and has a different formulation more in line with
the rest of the tech-specific constraints:

group_share:
csp,ccgt:

energy_cap_min: 0.5
energy_cap_max: 0.9
carrier_prod_min:

power: 0.5

In the process of making these updates, the demand_power_peak and (undocumented) ignored_techs options
were removed from group_share.

charge_rate

When first introduced, charge rate was used to hard-link energy_cap and storage_cap for a storage/supply_plus
technology. This meant that on defining energy_cap_max and charge_rate, a user was implicitly defining
storage_cap_max. This hard-link has now been removed, replaced with only one constraint concerning charge
rate: 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≥ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 : 𝑡𝑒𝑐ℎ)× 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑎𝑡𝑒(𝑙𝑜𝑐 : 𝑡𝑒𝑐ℎ).

See also:

Capacity

Pre-processed data

Version 0.5 kept pre-processed data in either a dictionary (static data), pandas dataframe (location data) or an xarray
Dataset (timeseries data). To view a value that would be used in optimisation, the user would call model.get_option().
Similarly, to edit a value before running the model, a user could use model.set_option().

Now, all pre-processed data is held in a single unified xarray Dataset: model.inputs.

To view and edit this data before it is sent to the solver, a user need only use standard xarray functionality (see their
documentation for more information).

Plotting data

Note: Advanced plotting is still under construction. In case our current functionality is insufficient, input and output
data can be plotted by the user using their preferred Python plotting tools, or any other language that can access either
NetCDF or CSV data.

1.3. New in v0.6.0 17

http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html
http://xarray.pydata.org/en/stable/

Calliope Documentation, Release 0.6.0

Plotting functions can now be called directly on the model and now use Plotly instead of 0.5’s matplotlib.

Changes are:

• calliope.analysis.plot_capacity(model.solution) to model.plot.capacity()

• calliope.analysis.plot_transmission(model.solution, carrier='power',
tech='ac_transmission') to model.plot.transmission()

• calliope.analysis.plot_carrier_production(model.solution, carrier='power')
to model.plot.timeseries()

All available data is plotted, with dropdown menus available for a user to move between plots. A summary of all
plotting can also be produced using model.plot.summary(), a function that is also available via the command
line interface.

See also:

Model class

Operational mode

In 0.6, running in operational mode changes capacities from decision variables to parameters, preventing various issues
that plagued operational mode in prior versions. Additional sense checks were added to ensure that functionality
incompatible with operational mode, such as time clustering, is not accidentally used together with it.

See also:

Operational mode

1.3.4 New functionality

Debugging & checks

A user can now output a data structure of all model input data (the model_run dictionary) after Calliope’s internal pre-
processing, into a YAML file, for debugging. This debug file includes comments as to where constraint/cost values
have originated (e.g. having been set by a location-specific configuration, or from a model-wide override group).

Similarly, sense checks are undertaken at several points during pre-processing to ensure the model being built is robust.
This includes checks for missing data, possibly misspelled constraints, incompatible inputs, and much more.

This functionality will not find all possible user input errors, as this is an impossible task. However, it flags common
mistakes, and the format of implementation allows for further checks to be applied in the future.

Pre-processed model

Having the pre-processed model available in one xarray Dataset allows a model to be saved to file before being run.
Although pre-processing is quick, this allows a user to avoid pre-processing the same file multiple times. Instead, they
can read in a previously saved NetCDF file which fully describes the model.

Multiple backends

Our primary solver backend is Pyomo. However, we have now extracted all pre-processing stages from the backend,
with all data for a model run being stored in a single xarray Dataset. This permits the implementation of additional
backends.

18 Chapter 1. User guide

https://plot.ly/python/
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html
http://www.pyomo.org/
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html

Calliope Documentation, Release 0.6.0

One such backend currently in an experimental state is based on JuMP in the Julia programming language. Linking
Calliope to Julia is a long-term project, for which we welcome any contributions.

Pyomo warmstart

Warmstart functionality can be used in solvers other than GLPK. They allow a previously constructed model to be
changed slightly without having to be fully rebuilt. This can speed up re-running a model when you have just a few
input parameters you would like to change (the cost of a technology, for instance).

Although the use of warmstart existed in operational mode in version 0.5, now it extends to all possible parameters
in all models. This functionality is currently undocumented in Calliope, but the Pyomo documentation provides some
information and the Pyomo model built by Calliope can be accessed by model._backend_model.

Backend interface

Once the backend model has been built, it can be accessed by a user, via Calliope. Parameters can be checked and
changed, constraints can be activated/deactivated and a model can be re run, all without having to build the backend
again. User who are familiar with building large models with Pyomo will be aware of the time penalty associated with
processing the model in Pyomo. This additional functionality helps mitigate this, as changing a few parameters need
not require complete model rebuild.

See also:

Pyomo backend interface

Logging

In an interactive Python session (e.g. using Jupyter notebook), output from Calliope can be triggered at different levels
of verbosity. By default on building the model (calliope.Model()) and running it (model.run()), there is no
logging displayed unless it is at least a WARNING. For helpful information on where the model is in its pre-processing
and running in the solver, verbosity can be increased using calliope.set_log_level().

See also:

Utility classes: AttrDict, Exceptions, Logging

1.4 Building a model

In short, a Calliope model works like this: supply technologies can take a resource from outside of the modeled
system and turn it into a specific energy carrier in the system. The model specifies one or more locations along with
the technologies allowed at those locations. Transmission technologies can move energy of the same carrier from one
location to another, while conversion technologies can convert one carrier into another at the same location. Demand
technologies remove energy from the system, while storage technologies can store energy at a specific location.
Putting all of these possibilities together allows a modeller to specify as simple or as complex a model as necessary to
answer a given research question.

In more technical terms, Calliope allows a modeller to define technologies with arbitrary characteristics by “inherit-
ing” basic traits from a number of included base tech groups – supply, supply_plus, demand, conversion,
conversion_plus, and transmission. These groups are described in more detail in List of abstract base
technology groups.

1.4. Building a model 19

https://github.com/JuliaOpt/JuMP.jl

Calliope Documentation, Release 0.6.0

1.4.1 Terminology

The terminology defined here is used throughout the documentation and the model code and configuration files:

• Technology: a technology that produces, consumes, converts or transports energy

• Location: a site which can contain multiple technologies and which may contain other locations for energy
balancing purposes

• Resource: a source or sink of energy that can (or must) be used by a technology to introduce into or remove
energy from the system

• Carrier: an energy carrier that groups technologies together into the same network, for example
electricity or heat.

As more generally in constrained optimisation, the following terms are also used:

• Parameter: a fixed coefficient that enters into model equations

• Variable: a variable coefficient (decision variable) that enters into model equations

• Set: an index in the algebraic formulation of the equations

• Constraint: an equality or inequality expression that constrains one or several variables

1.4.2 Files that define a model

Calliope models are defined through YAML files, which are both human-readable and computer-readable, and CSV
files (a simple tabular format) for time series data.

It makes sense to collect all files belonging to a model inside a single model directory. The layout of that directory
typically looks roughly like this (+ denotes directories, - files):

+ example_model
+ model_config

- locations.yaml
- techs.yaml

+ timeseries_data
- solar_resource.csv
- electricity_demand.csv

- model.yaml
- overrides.yaml

In the above example, the files model.yaml, locations.yaml and techs.yaml together are the model defi-
nition. This definition could be in one file, but it is more readable when split into multiple. We use the above layout in
the example models and in our research!

Inside the timeseries_data directory, timeseries are stored as CSV files. The location of this directory can be
specified in the model configuration, e.g. in model.yaml.

Note: The easiest way to create a new model is to use the calliope new command, which makes a copy of one
of the built-in examples models:

$ calliope new my_new_model

This creates a new directory, my_new_model, in the current working directory.

By default, calliope new uses the national-scale example model as a template. To use a different template, you
can specify the example model to use, e.g.: --template=urban_scale.

20 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

See also:

YAML configuration file format, Built-in example models, Time series data

1.4.3 Model configuration (model)

The model configuration specifies all aspects of the model to run. It is structured into several top-level headings (keys
in the YAML file): model, techs, locations, links, and run. We will discuss each of these in turn, starting
with model:

model:
name: 'My energy model'
timeseries_data_path: 'timeseries_data'
reserve_margin:

power: 0
subset_time: ['2005-01-01', '2005-01-05']

Besides the model’s name (name) and the path for CSV time series data (timeseries_data_path), model-wide
constraints can be set, like reserve_margin.

To speed up model runs, the above example specifies a time subset to run the model over only five days of time series
data (subset_time: ['2005-01-01', '2005-01-05'])– this is entirely optional. Usually, a full model
will contain at least one year of data, but subsetting time can be useful to speed up a model for testing purposes.

See also:

National scale example model, List of model settings

1.4.4 Technologies (techs)

The techs section in the model configuration specifies all of the model’s technologies. In our current example, this
is in a separate file, model_config/techs.yaml, which is imported into the main model.yaml file alongside
the file for locations described further below:

import:
- 'model_config/techs.yaml'
- 'model_config/locations.yaml'

Note: The import statement can specify a list of paths to additional files to import (the imported files, in turn, may
include further files, so arbitrary degrees of nested configurations are possible). The import statement can either
give an absolute path or a path relative to the importing file.

The following example shows the definition of a ccgt technology, i.e. a combined cycle gas turbine that delivers
electricity:

ccgt:
essentials:

name: 'Combined cycle gas turbine'
color: '#FDC97D'
parent: supply
carrier_out: power

constraints:
resource: inf
energy_eff: 0.5

(continues on next page)

1.4. Building a model 21

Calliope Documentation, Release 0.6.0

(continued from previous page)

energy_cap_max: 40000 # kW
energy_cap_max_systemwide: 100000 # kW
energy_ramping: 0.8
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per kWh

Each technology must specify some essentials, most importantly a name, the abstract base technology it is in-
heriting from (parent), and its energy carrier (carrier_out in the case of a supply technology). Specifying a
color is optional but useful for using the built-in visualisation tools (see Analysing a model).

The constraints section gives all constraints for the technology, such as allowed capacities, conversion efficien-
cies, the life time (used in levelised cost calculations), and the resource it consumes (in the above example, the resource
is set to infinite via inf).

The costs section gives costs for the technology. Calliope uses the concept of “cost classes” to allow accounting for
more than just monetary costs. The above example specifies only the monetary cost class, but any number of other
classes could be used, for example co2 to account for emissions.

Only the monetary cost class is entered into the default objective function. Additional cost classes can be created
simply by adding them to the definition of costs for a technology.

See also:

List of possible constraints, List of possible costs, tutorials, built-in examples

Allowing for unmet demand

For a model to find a feasible solution, supply must always be able to meet demand. To avoid the solver failing to find
a solution, you can ensure feasibility:

run:
ensure_feasibility: true

This will create an unmet_demand decision variable in the optimisation, which can pick up any mismatch between
supply and demand, across all energy carriers. It has a very high cost associated with its use, so it will only appear
when absolutely necessary.

Note: When ensuring feasibility, you can also set a big M value (run.bigM). This is the “cost” of unmet demand. It
is possible to make model convergence very slow if bigM is set too high. default bigM is 1x10 9, but should be close
to the maximum total system cost that you can imagine. This is perhaps closer to 1x10 6 for urban scale models.

1.4.5 Locations and links (locations, links)

A model can specify any number of locations. These locations are linked together by transmission technologies. By
consuming an energy carrier in one location and outputting it in another, linked location, transmission technologies
allow resources to be drawn from the system at a different location from where they are brought into it.

The locations section specifies each location:

22 Chapter 1. User guide

https://en.wikipedia.org/wiki/Big_M_method

Calliope Documentation, Release 0.6.0

locations:
region1:

coordinates: {lat: 40, lon: -2}
techs:

unmet_demand_power:
demand_power:
ccgt:

constraints:
energy_cap_max: 30000

Locations can optionally specify coordinates (used in visualisation or to compute distance between them) and
must specify techs allowed at that location. As seen in the example above, each allowed tech must be listed, and
can optionally specify additional location-specific constraints. If given, location-specific constraints supersede any
model-wide constraints a technology defines in the techs section for that location.

The links section specifies possible transmission links between locations in the form location1,location2:

links:
region1,region2:

techs:
ac_transmission:

constraints:
energy_cap_max: 10000

In the above example, an high-voltage AC transmission line is specified to connect region1 with region2. For
this to work, a transmission technology called ac_transmission must have previously been defined in the
model’s techs section. There, it can be given model-wide constraints such as costs. As in the case of locations, the
links section can specify per-link constraints that supersede any model-wide constraints.

The modeller can also specify a distance for each link, and use per-distance constraints and costs for transmission
technologies.

See also:

List of possible constraints, List of possible costs.

1.4.6 Run configuration (run)

The only required setting in the run configuration is the solver to use:

run:
solver: glpk
model: plan

the most important parts of the run section are solver and mode. A model can run either in planning mode (plan)
or operational mode (operate). In planning mode, capacities are determined by the model, whereas in operational
mode, capacities are fixed and the system is operated with a receding horizon control algorithm.

Possible options for solver include glpk, gurobi, cplex, and cbc. The interface to these solvers is done through
the Pyomo library. Any solver compatible with Pyomo should work with Calliope.

For solvers with which Pyomo provides more than one way to interface, the additional solver_io option can be
used. In the case of Gurobi, for example, it is usually fastest to use the direct Python interface:

run:
solver: gurobi
solver_io: python

1.4. Building a model 23

https://software.sandia.gov/downloads/pub/pyomo/PyomoInstallGuide.html#Solvers

Calliope Documentation, Release 0.6.0

Note: The opposite is currently true for CPLEX, which runs faster with the default solver_io.

Further optional settings, including debug settings, can be specified in the run configuration.

See also:

List of run settings, Debugging failing runs, Solver options, documentation on operational mode.

1.4.7 Overrides

To make it easier to run a given model multiple times with slightly changed settings or constraints, for example,
varying the cost of a key technology, it is possible to define and apply “override groups” in a separate file (in the above
example, overrides.yaml):

run1:
model.subset_time: ['2005-01-01', '2005-01-31']

run2:
model.subset_time: ['2005-02-01', '2005-02-31']

Each group is given by a name (above, run1 and run2) and any number of model settings – anything in the model
configuration can be overridden by an override group. In the above example, the two runs specify different time
subsets, so would run an otherwise identical model over two different periods of time series data.

One or several override groups can be applied when running a model, as described in Running a model. They can also
be used to generate scripts that run a Calliope model with slightly changed settings many times, either sequentially, or
in parallel on a high-performance cluster.

See also:

Generating scripts to run a model many times

1.5 Running a model

There are essentially three ways to run a Calliope model:

1. With the calliope run command-line tool.

2. By programmatically creating and running a model from within other Python code, or in an interactive Python
session.

3. By generating and then executing scripts with the calliope generate_runs command-line tool, which
is primarily designed for running many scenarios on a high-performance cluster.

1.5.1 Running with the command-line tool

We can easily run a model after creating it (see Building a model), saving results to a single NetCDF file for further
processing:

$ calliope run testmodel/model.yaml --save_netcdf=results.nc

The calliope run command takes the following options:

• --save_netcdf={filename.nc}: Save complete model, including results, to the given NetCDF file.
This is the recommended way to save model input and output data into a single file, as it preserves all data fully,
and allows later reconstruction of the Calliope model for further analysis.

24 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

• --save_csv={directory name}: Save results as a set of CSV files to the given directory. This can be
handy if the modeler needs results in a simple text-based format for further processing with a tool like Microsoft
Excel.

• --save_plots={filename.html}: Save interactive plots to the given HTML file (see Analysing a model
for further details on the plotting functionality).

• --debug: Run in debug mode, which prints more internal information, and is useful when troubleshooting
failing models.

• --override_file={filename.yaml}:{override_groups}: Specify override groups to apply to
the model (see below for more information).

• --help: Show all available options.

Multiple options can be specified, for example, saving NetCDF, CSV, and HTML plots simultaneously:

$ calliope run testmodel/model.yaml --save_netcdf=results.nc --save_csv=outputs --
→˓save_plots=plots.html

Warning: Unlike in versions prior to 0.6.0, the command-line tool in Calliope 0.6.0 and upward does not save
results by default – the modeller must specify one of the -save options.

Overrides

Assuming we have specified an override group called milp in a file called overrides.yaml, we can apply it to
our model with:

$ calliope run testmodel/model.yaml --override_file=overrides.yaml:milp --save_
→˓netcdf=results.nc

Multiple overrides from the YAML file can be applied at once. For example, we may want to change
some of the costs through an additional override group called high_cost_scenario. We could then use
--override_file=overrides.yaml:milp,high_cost_scenario to apply both overrides simultane-
ously.

See also:

Analysing a model, Overrides

1.5.2 Running interactively with Python

The most basic way to run a model programmatically from within a Python interpreter is to create a Model instance
with a given model.yaml configuration file, and then call its run() method:

import calliope
model = calliope.Model('path/to/model.yaml')
model.run()

Note: If config is not specified (i.e. model = Model()), an error is raised. See Built-in example models for
information on instantiating a simple example model without specifying a custom model configuration.

1.5. Running a model 25

Calliope Documentation, Release 0.6.0

Note: Calliope logs useful progress information to the INFO log level, but does not change the default log level from
WARNING. To see progress information when running interactively, call calliope.set_log_level('INFO')
immediately after importing Calliope.

Other ways to load a model interactively are:

• Passing an AttrDict or standard Python dictionary to the Model constructor, with the same nested format as
the YAML model configuration (top-level keys: model, run, locations, techs).

• Loading a previously saved model from a NetCDF file with model = calliope.read_netcdf('path/
to/saved_model.nc'). This can either be a pre-processed model saved before its run method was called,
which will include input data only, or a completely solved model, which will include input and result data.

After instantiating the Model object, and before calling the run() method, it is possible to manually inspect and
adjust the configuration of the model. The pre-processed inputs are all held in the xarray Dataset model.inputs.

After the model has been solved, an xarray Dataset containing results (model.results) can be accessed. At this
point, the model can be saved with either to_csv() or to_netcdf(), which saves all inputs and results, and is
equivalent to the corresponding --save options of the command-line tool.

See also:

An example of interactive running in a Python session, which also demonstrates some of the analysis possibilities after
running a model, is given in the tutorials. You can download and run the embedded notebooks on your own machine
(if both Calliope and the Jupyter Notebook are installed).

Overrides

There are two ways to apply override groups interactively:

1. By setting the override_file argument analogously to use in the command-line tool, e.g.:

model = calliope.Model(
'model.yaml',
override_file='overrides.yaml:milp'

)

2. By passing the override_dict argument, which is a Python dictionary or AttrDict of overrides:

model = calliope.Model(
'model.yaml',
override_dict={'run.solver': 'gurobi'}

)

Tracking progress

When running Calliope in command line, logging of model pre-processing and solving occurs automatically. Inter-
actively, for example in a Jupyter notebook, you can enable verbose logging by running the following code before
instantiating and running a Calliope model:

import logging

logging.basicConfig(
level=logging.INFO,
format='%(levelname)s: %(message)s',

(continues on next page)

26 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

)

logger = logging.getLogger()

This will include model processing output, as well as the output of the chosen solver.

1.5.3 Generating scripts for many model runs

Scripts to simplify the creation and execution of a large number of Calliope model runs are generated with the
calliope generate_runs command-line tool. More detail on this is available in Generating scripts to run
a model many times.

1.5.4 Improving solution times

Large models will take time to solve. The most basic advice is to just let it run on a remote device (another computer
or a high performance computing cluster) and forget about it until it is done. However, if you need results now, there
are ways to improve solution time, invariably at the expense of model ‘accuracy’.

Number of variables

The sets locs, techs, timesteps, carriers, and costs all contribute to model complexity. A reduction of
any of these sets will reduce the number of resulting decision variables in the optimisation, which in turn will improve
solution times.

Note: By reducing the number of locations (e.g. merging nearby locations) you also remove the technologies linking
those locations to the rest of the system, which is additionally beneficial.

Currently, we only provide automatic set reduction for timesteps. Timesteps can be resampled (e.g. 1hr -> 2hr
intervals), masked (e.g. 1hr -> 12hr intervals except one week of particular interest), or clustered (e.g. 365 days to 5
days, each representing 73 days of the year, with 1hr resolution). In so doing, significant solution time improvements
can be acheived.

See also:

Time resolution adjustment, Stefan Pfenninger (2017). Dealing with multiple decades of hourly wind and PV time
series in energy models: a comparison of methods to reduce time resolution and the planning implications of inter-
annual variability. Applied Energy.

Complex technologies

Calliope is primarily an LP framework, but application of certain constraints will trigger binary or integer decision
variables. When triggered, a MILP model will be created.

In both cases, there will be a time penalty, as linear programming solvers are less able to converge on solutions
of problems which include binary or integer decision variables. But, the additional functionality can be useful. A
purchasing cost allows for a cost curve of the form y = Mx + C to be applied to a technology, instead of the LP
costs which are all of the form y = Mx. Integer units also trigger per-timestep decision variables, which allow
technologies to be “on” or “off” at each timestep.

Additionally, in LP models, interactions between timesteps (in storage technologies) can lead to longer solution
time. The exact extent of this is as-yet untested.

1.5. Running a model 27

https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1016/j.apenergy.2017.03.051

Calliope Documentation, Release 0.6.0

Model mode

Solution time increases more than linearly with the number of decision variables. As it splits the model into ~daily
chunks, operational mode can help to alleviate solution time of big problems. This is clearly at the expense of fixing
technology capacities. However, one solution is to use a heavily time clustered plan mode to get indicative model
capacities. Then run operate mode with these capacities to get a higher resolution operation strategy. If necessary,
this process could be iterated.

See also:

Operational mode

Solver choice

The open-source solvers (GLPK and CBC) are slower than the commercial solvers. If you are an academic researcher,
it is recommended to acquire a free licence for Gurobi or CPLEX to very quickly improve solution times. GLPK in
particular is slow when solving MILP models. CBC is an improvement, but can still be several orders of magnitude
slower at reaching a solution than Gurobi or CPLEX.

See also:

Solver options

Rerunning a model

After running, if there is an infeasibility you want to address, or simply a few values you dont think were quite right,
you can change them and rerun your model. If you change them in model.inputs, just rerun the model as model.
run(force_rerun=True).

Note: model.run(force_rerun=True) will replace you current model.results and rebuild he entire model
backend. You may want to save your model before doing this.

Particularly if your problem is large, you may not want to rebuild the backend to change a few small values. Instead
you can interface directly with the backend using the model.backend functions, to update individual parameter
values and switch constraints on/off. By rerunning the backend specifically, you can optimise your problem with these
backend changes, without rebuilding the backend entirely.

Note: model.inputs and model.results will not be changed when updating and rerunning the backend.
Instead, a new xarray Dataset is returned.

See also:

Interfacing with the solver backend

1.5.5 Debugging failing runs

What will typically go wrong, in order of decreasing likelihood:

• The model is improperly defined or missing data. Calliope will attempt to diagnose some common errors and
raise an appropriate error message.

28 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

• The model is consistent and properly defined but infeasible. Calliope will be able to construct the model and
pass it on to the solver, but the solver (after a potentially long time) will abort with a message stating that the
model is infeasible.

• There is a bug in Calliope causing the model to crash either before being passed to the solver, or after the solver
has completed and when results are passed back to Calliope.

Calliope provides some run configuration options to make it easier to determine the cause of the first two of these
possibilities. See the debugging options described in the full configuration listing.

1.6 Analysing a model

Calliope inputs and results are designed for easy handling. Whatever software you prefer to use for data processing,
either the NetCDF or CSV output options should provide a path to importing your Calliope results. If you prefer to
not worry about writing your own scripts, then we have that covered too! The built-in plotting functions in plot are
built on Plotly’s interactive visualisation tools to bring your data to life.

1.6.1 Accessing model data and results

A model which solved successfully has two primary Datasets with data of interest:

• model.inputs: contains all input data, such as renewable resource capacity factors

• model.results: contains all results data, such as dispatch decisions and installed capacities

In both of these, variables are indexed over concatenated sets of locations and technologies, over a dimension we call
loc_techs. For example, if a technology called boiler only exists in location X1 and not in locations X2 or X3,
then it will have a single entry in the loc_techs dimension called X1::boiler. For parameters which also consider
different energy carriers, we use a loc_tech_carrier dimension, such that we would have, in the case of the
prior boiler example, X1::boiler::heat.

This concatenated set formulation is memory-efficient but cumbersome to deal with, so the model.
get_formatted_array(name_of_variable) function can be used to retrieve a DataArray indexed over
separate dimensions (any of techs, locs, carriers, costs, timesteps, depending on the desired variable).

Note: On saving to CSV (see the command-line interface documentation), all variables are saved to a single file each,
which are always indexed over all dimensions rather than just the concatenated dimensions.

1.6.2 Visualising results

In an interactive Python session, there are four primary visualisation functions: capacity, timeseries,
transmission, and summary. To gain access to result visualisation without the need to interact with Python,
the summary plot can also be accessed from the command line interface (see below).

Refer to the API documentation for the analysis module for an overview of available analysis functionality.

Refer to the tutorials for some basic analysis techniques.

Plotting time series

The following example shows a timeseries plot of the built-in urban scale example model:

1.6. Analysing a model 29

https://plot.ly/

Calliope Documentation, Release 0.6.0

In Python, we get this function by calling model.plot.timeseries(). It includes all relevant timeseries infor-
mation, from both inputs and results. We can force it to only have particular results in the dropdown menu:

Only inputs or only results
model.plot.timeseries(array='inputs')
model.plot.timeseries(array='results')

Only consumed resource
model.plot.timeseries(array='resource_con')

Only consumed resource and `power` carrier flow
model.plot.timeseries(array=['power', `resource_con`])

The data used to build the plots can also be subset and ordered by using the subset argument. This uses xarray’s
‘loc’ indexing functionality to access subsets of data:

Only show region1 data (rather than the default, which is a sum of all locations)
model.plot.timeseries(subset={'locs': ['region1']})

Only show a subset of technologies
model.plot.timeseries(subset={'techs': ['ccgt', 'csp']})

Assuming our model has three techs, 'ccgt', 'csp', and 'battery',
specifying `subset` lets us order them in the stacked barchart
model.plot.timeseries(subset={'techs': ['ccgt', 'battery', 'csp']})

When aggregating model timesteps with clustering methods, the timeseries plots are adjusted accordingly (example
from the built-in time_clustering example model):

See also:

API documentation for the analysis module

Plotting capacities

The following example shows a capacity plot of the built-in urban scale example model:

Functionality is similar to timeseries, this time called by model.plot.capacity(). Here we show capacity
limits set at input and chosen capacities at output. Choosing dropdowns and subsetting works in the same way as for
timeseries plots

Plotting transmission

The following example shows a transmission plot of the built-in urban scale example model:

By calling model.plot.transmission() you will see installed links, their capacities (on hover), and the
locations of the nodes. This functionality only works if you have physically pinpointed your locations using the
coordinates key for your location.

The above plot uses Mapbox to overlay our transmission plot on Openstreetmap. By creating an account at Mapbox
and acquiring a Mapbox access token, you can also create similar visualisations by giving the token to the plotting
function: model.plot.transmission(mapbox_access_token='your token here').

Without the token, the plot will fall back on simple country-level outlines. In this urban scale example, the background
is thus just grey (zoom out to see the UK!):

30 Chapter 1. User guide

http://xarray.pydata.org/en/stable/indexing.html
http://xarray.pydata.org/en/stable/indexing.html
https://www.mapbox.com/

Calliope Documentation, Release 0.6.0

Note: If the coordinates were in x and y, not lat and lon, the transmission trace would be given on a cartesian plot.

Summary plots

If you want all the data in one place, you can run model.plot.summary(out_file='path/to/file.
html'), which will build a HTML file of all the interactive plots (maintaining the interactivity) and save it to
out_file. This HTML file can be opened in a web browser to show all the plots. This funcionality is made
avaiable in the command line interface by using the command --save_plots=filename.html when running
the model.

See an example of such a HTML plot here.

See also:

Running with the command-line tool

Saving publication-quality SVG figures

On calling any of the three primary plotting functions, you can also set save_svg=True for a high quality vector
graphic to be saved. This file can be prepared for publication in programs like Inkscape.

Note: For similar results in the command line interface, you’ll currently need to save your model to netcdf
(--save_netcdf={filename.nc}) then load it into a Calliope Model object in Python. Once there, you can
use the above functions to get your SVGs.

1.6.3 Reading solutions

Calliope provides functionality to read a previously-saved model from a single NetCDF file:

solved_model = calliope.read_netcdf('my_saved_model.nc')

In the above example, the model’s input data will be available under solved_model.inputs, while the results (if
the model had previously been solved) are available under solved_model.results.

Both of these are xarray.Datasets and can be further processed with Python.

See also:

The xarray documentation should be consulted for further information on dealing with Datasets. Calliope’s NetCDF
files follow the CF conventions and can easily be processed with any other tool that can deal with NetCDF.

1.7 Tutorials

The tutorials are based on the built-in example models, they explain the key steps necessary to set up and run simple
models. Refer to the other parts of the documentation for more detailed information on configuring and running more
complex models. The built-in examples are simple on purpose, to show the key components of a Calliope model with
which models of arbitrary complexity can be built.

The first tutorial builds a model for part of a national grid, exhibiting the following Calliope functionality:

• Use of supply, supply_plus, demand, storage and transmission technologies

1.7. Tutorials 31

../_static/plot_summary.html
https://inkscape.org/en/
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/
http://cfconventions.org/

Calliope Documentation, Release 0.6.0

• Nested locations

• Multiple cost types

The second tutorial builds a model for part of a district network, exhibiting the following Calliope functionality:

• Use of supply, demand, conversion, conversion_plus, and transmission technologies

• Use of multiple energy carriers

• Revenue generation, by carrier export

The third tutorial extends the second tutorial, exhibiting binary and integer decision variable functionality (extended
an LP model to a MILP model)

1.7.1 Tutorial 1: national scale

This example consists of two possible power supply technologies, a power demand at two locations, the possibility
for battery storage at one of the locations, and a transmission technology linking the two. The diagram below gives an
overview:

Fig. 1: Overview of the built-in national-scale example model

Supply-side technologies

The example model defines two power supply technologies.

The first is ccgt (combined-cycle gas turbine), which serves as an example of a simple technology with an infinite
resource. Its only constraints are the cost of built capacity (energy_cap) and a constraint on its maximum built
capacity.

Fig. 2: The layout of a supply node, in this case ccgt, which has an infinite resource, a carrier conversion efficiency
(𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓), and a constraint on its maximum built 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝 (which puts an upper limit on 𝑒𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑜𝑑).

The definition of this technology in the example model’s configuration looks as follows:

ccgt:
essentials:

name: 'Combined cycle gas turbine'
color: '#E37A72'
parent: supply
carrier_out: power

constraints:
resource: inf
energy_eff: 0.5
energy_cap_max: 40000 # kW
energy_cap_max_systemwide: 100000 # kW
energy_ramping: 0.8
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per kWh

32 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

There are a few things to note. First, ccgt defines essential information: a name, a color (given as an HTML color
code, for later visualisation), its parent, supply, and its carrier_out, power. It has set itself up as a power supply
technology. This is followed by the definition of constraints and costs (the only cost class used is monetary, but this is
where other “costs”, such as emissions, could be defined).

Note: There are technically no restrictions on the units used in model definitions. Usually, the units will be kW and
kWh, alongside a currency like USD for costs. It is the responsibility of the modeler to ensure that units are correct
and consistent. Some of the analysis functionality in the analysis module assumes that kW and kWh are used when
drawing figure and axis labels, but apart from that, there is nothing preventing the use of other units.

The second technology is csp (concentrating solar power), and serves as an example of a complex supply_plus
technology making use of:

• a finite resource based on time series data

• built-in storage

• plant-internal losses (parasitic_eff)

Fig. 3: The layout of a more complex node, in this case csp, which makes use of most node-level functionality
available.

This definition in the example model’s configuration is more verbose:

csp:
essentials:

name: 'Concentrating solar power'
color: '#F9CF22'
parent: supply_plus
carrier_out: power

constraints:
storage_cap_max: 614033
charge_rate: 1
storage_loss: 0.002
resource: file=csp_resource.csv
energy_eff: 0.4
parasitic_eff: 0.9
resource_area_max: inf
energy_cap_max: 10000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
storage_cap: 50
resource_area: 200
resource_cap: 200
energy_cap: 1000
om_prod: 0.002

Again, csp has the definitions for name, color, parent, and carrier_out. Its constraints are more numerous: it defines
a maximum storage capacity (storage_cap_max), an hourly storage loss rate (storage_loss), then specifies
that its resource should be read from a file (more on that below). It also defines a carrier conversion efficiency of
0.4 and a parasitic efficiency of 0.9 (i.e., an internal loss of 0.1). Finally, the resource collector area and the installed
carrier conversion capacity are constrained to a maximum.

The costs are more numerous as well, and include monetary costs for all relevant components along the conversion
from resource to carrier (power): storage capacity, resource collector area, resource conversion capacity, energy con-

1.7. Tutorials 33

Calliope Documentation, Release 0.6.0

version capacity, and variable operational and maintenance costs. Finally, it also overrides the default value for the
monetary interest rate.

Storage technologies

The second location allows a limited amount of battery storage to be deployed to better balance the system. This
technology is defined as follows:

Fig. 4: A storage node with an 𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓 and 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑙𝑜𝑠𝑠.

battery:
essentials:

name: 'Battery storage'
color: '#3B61E3'
parent: storage
carrier: power

constraints:
energy_cap_max: 1000 # kW
storage_cap_max: inf
charge_rate: 4
energy_eff: 0.95 # 0.95 * 0.95 = 0.9025 round trip efficiency
storage_loss: 0 # No loss over time assumed
lifetime: 25

costs:
monetary:

interest_rate: 0.10
storage_cap: 200 # USD per kWh storage capacity

The contraints give a maximum installed generation capacity for battery storage together with a charge rate
(charge_rate) of 4, which in turn limits the storage capacity. The charge rate is the charge/discharge rate / storage
capacity (a.k.a the battery resevoir). In the case of a storage technology, energy_eff applies twice: on charging
and discharging. In addition, storage technologies can lose stored energy over time – in this case, we set this loss to
zero.

Other technologies

Three more technologies are needed for a simple model. First, a definition of power demand:

Fig. 5: A simple demand node.

demand_power:
essentials:

name: 'Power demand'
color: '#072486'
parent: demand
carrier: power

Power demand is a technology like any other. We will associate an actual demand time series with the demand
technology later.

What remains to set up is a simple transmission technologies. Transmission technologies (like conversion technolo-
gies) look different than other nodes, as they link the carrier at one location to the carrier at another (or, in the case of
conversion, one carrier to another at the same location):

34 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Fig. 6: A simple transmission node with an 𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓 .

ac_transmission:
essentials:

name: 'AC power transmission'
color: '#8465A9'
parent: transmission
carrier: power

constraints:
energy_eff: 0.85
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 200
om_prod: 0.002

free_transmission:
essentials:

name: 'Local power transmission'
color: '#6783E3'
parent: transmission
carrier: power

constraints:
energy_cap_max: inf
energy_eff: 1.0

costs:
monetary:

om_prod: 0

ac_transmission has an efficiency of 0.85, so a loss during transmission of 0.15, as well as some cost definitions.

free_transmission allows local power transmission from any of the csp facilities to the nearest location. As the
name suggests, it applies no cost or efficiency losses to this transmission.

Locations

In order to translate the model requirements shown in this section’s introduction into a model definition, five locations
are used: region-1, region-2, region1-1, region1-2, and region1-3.

The technologies are set up in these locations as follows:

Fig. 7: Locations and their technologies in the example model

Let’s now look at the first location definition:

region1:
coordinates: {lat: 40, lon: -2}
techs:

demand_power:
constraints:

resource: file=demand-1.csv:demand
ccgt:

(continues on next page)

1.7. Tutorials 35

Calliope Documentation, Release 0.6.0

(continued from previous page)

constraints:
energy_cap_max: 30000 # increased to ensure no unmet_demand in first

→˓timestep

There are several things to note here:

• The location specifies a dictionary of technologies that it allows (techs), with each key of the dictionary
referring to the name of technologies defined in our techs.yaml file. Note that technologies listed here must
have been defined elsewhere in the model configuration.

• It also overrides some options for both demand_power and ccgt. For the latter, it simply sets a location-
specific maximum capacity constraint. For demand_power, the options set here are related to reading the
demand time series from a CSV file. CSV is a simple text-based format that stores tables by comma-separated
rows. Note that we did not define any resource option in the definition of the demand_power technology.
Instead, this is done directly via a location-specific override. For this location, the file demand-1.csv is
loaded and the column demand is taken (the text after the colon). If no column is specified, Calliope will
assume that the column name matches the location name region1-1. Note that in Calliope, a supply is
positive and a demand is negative, so the stored CSV data will be negative.

• Coordinates are defined by latitude (lat) and longitude (lon), which will be used to calculate distance of
transmission lines (unless we specify otherwise later on) and for location-based visualisation.

The remaining location definitions look like this:

region2:
coordinates: {lat: 40, lon: -8}
techs:

demand_power:
constraints:

resource: file=demand-2.csv:demand
battery:

region1-1.coordinates: {lat: 41, lon: -2}
region1-2.coordinates: {lat: 39, lon: -1}
region1-3.coordinates: {lat: 39, lon: -2}

region1-1, region1-2, region1-3:
techs:

csp:

region2 is very similar to region1, except that it does not allow the ccgt technology. The three region1-
locations are defined together, except for their location coordinates, i.e. they each get the exact same configuration.
They allow only the csp technology, this allows us to model three possible sites for CSP plants.

For transmission technologies, the model also needs to know which locations can be linked, and this is set up in the
model configuration as follows:

region1,region2:
techs:

ac_transmission:
constraints:

energy_cap_max: 10000
region1,region1-1:

techs:
free_transmission:

region1,region1-2:
techs:

(continues on next page)

36 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

free_transmission:
region1,region1-3:

techs:
free_transmission:

We are able to override constraints for transmission technologies at this point, such as the maximum capacity of the
specific region1 to region2 link shown here.

Running the model

We now take you through running the model in a Jupyter notebook, which is included fully below. To download and
run the notebook yourself, you can find it here. You will need to have Calliope installed.

1.7.2 Tutorial 2: urban scale

This example consists of two possible sources of electricity, one possible source of heat, and one possible source
of simultaneous heat and electricity. There are three locations, each describing a building, with transmission links
between them. The diagram below gives an overview:

Fig. 8: Overview of the built-in urban-scale example model

Supply technologies

This example model defines three supply technologies.

The first two are supply_gas and supply_grid_power, referring to the supply of gas (natural gas) and
electricity, respectively, from the national distribution system. These ‘inifinitely’ available national commodities
can become energy carriers in the system, with the cost of their purchase being considered at supply, not conversion.

Fig. 9: The layout of a simple supply technology, in this case supply_gas, which has a resource input and a carrier
output. A carrier conversion efficiency (𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓) can also be applied (although isn’t considered for our supply
technologies in this problem).

The definition of these technologies in the example model’s configuration looks as follows:

supply_grid_power:
essentials:

name: 'National grid import'
color: '#C5ABE3'
parent: supply
carrier: electricity

constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 15

(continues on next page)

1.7. Tutorials 37

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.6.0/_static/notebooks/national_scale.ipynb

Calliope Documentation, Release 0.6.0

(continued from previous page)

om_con: 0.1 # 10p/kWh electricity price #ppt

supply_gas:
essentials:

name: 'Natural gas import'
color: '#C98AAD'
parent: supply
carrier: gas

constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 1
om_con: 0.025 # 2.5p/kWh gas price #ppt

The final supply technology is pv (solar photovoltaic power), which serves as an inflexible supply technology. It
has a time-dependant resource availablity, loaded from file, a maximum area over which it can capture its reo-
surce (resource_area_max) and a requirement that all available resource must be used (force_resource:
True). This emulates the reality of solar technologies: once installed, their production matches the availability of
solar energy.

The efficiency of the DC to AC inverter (which occurs after conversion from resource to energy carrier) is considered
in parasitic_eff and the resource_area_per_energy_cap gives a link between the installed area of
solar panels to the installed capacity of those panels (i.e. kWp).

In most cases, domestic PV panels are able to export excess energy to the national grid. We allow this here by
specifying an export_carrier. Revenue for export will be considered on a per-location basis.

The definition of this technology in the example model’s configuration looks as follows:

pv:
essentials:

name: 'Solar photovoltaic power'
color: '#F9D956'
parent: supply_power_plus

constraints:
export_carrier: electricity
resource: file=pv_resource.csv # Already accounts for panel efficiency - kWh/

→˓m2. Source: Renewables.ninja Solar PV Power - Version: 1.1 - License: https://
→˓creativecommons.org/licenses/by-nc/4.0/ - Reference: https://doi.org/10.1016/j.
→˓energy.2016.08.060

parasitic_eff: 0.85 # inverter losses
energy_cap_max: 250
resource_area_max: 1500
force_resource: true
resource_area_per_energy_cap: 7 # 7m2 of panels needed to fit 1kWp of panels
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 1350

Finally, the parent of the PV technology is not supply_plus, but rather supply_power_plus. We use this
to show the possibility of an intermediate technology group, which provides the information on the energy carrier
(electricity) and the ultimate abstract base technology (supply_plus):

38 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

tech_groups:
supply_power_plus:

essentials:
parent: supply_plus
carrier: electricity

Intermediate technology groups allow us to avoid repetition of technology information, be it in essentials,
constraints, or costs, by linking multiple technologies to the same intermediate group.

Conversion technologies

The example model defines two conversion technologies.

The first is boiler (natural gas boiler), which serves as an example of a simple conversion technology with one input
carrier and one output carrier. Its only constraints are the cost of built capacity (costs.monetary.energy_cap),
a constraint on its maximum built capacity (constraints.energy_cap.max), and an energy conversion effi-
ciency (energy_eff).

Fig. 10: The layout of a simple node, in this case boiler, which has one carrier input, one carrier output, a carrier
conversion efficiency (𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓), and a constraint on its maximum built 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝 (which puts an upper limit on
𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑).

The definition of this technology in the example model’s configuration looks as follows:

boiler:
essentials:

name: 'Natural gas boiler'
color: '#8E2999'
parent: conversion
carrier_out: heat
carrier_in: gas

constraints:
energy_cap_max: 600
energy_eff: 0.85
lifetime: 25

costs:
monetary:

interest_rate: 0.10

There are a few things to note. First, boiler defines a name, a color (given as an HTML color code), and a
stack_weight. These are used by the built-in analysis tools when analyzing model results. Second, it specifies its
parent, conversion, its carrier_in gas, and its carrier_out heat, thus setting itself up as a gas to heat conversion
technology. This is followed by the definition of constraints and costs (the only cost class used is monetary, but this is
where other “costs”, such as emissions, could be defined).

The second technology is chp (combined heat and power), and serves as an example of a possible conversion_plus
technology making use of two output carriers.

Fig. 11: The layout of a more complex node, in this case chp, which makes use of multiple output carriers.

This definition in the example model’s configuration is more verbose:

1.7. Tutorials 39

Calliope Documentation, Release 0.6.0

chp:
essentials:

name: 'Combined heat and power'
color: '#E4AB97'
parent: conversion_plus
primary_carrier: electricity
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat

constraints:
export_carrier: electricity
energy_cap_max: 1500
energy_eff: 0.405
carrier_ratios.carrier_out_2.heat: 0.8
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 750
om_prod: 0.004 # .4p/kWh for 4500 operating hours/year
export: file=export_power.csv

See also:

The conversion_plus tech

Again, chp has the definitions for name, color, parent, and carrier_in/out. It now has an additional carrier
(carrier_out_2) defined in its essential information, allowing a second carrier to be produced at the same time
as the first carrier (carrier_out). The carrier ratio constraint tells us the ratio of carrier_out_2 to carrier_out that
we can achieve, in this case 0.8 units of heat are produced every time a unit of electricity is produced. to produce
these units of energy, gas is consumed at a rate of carrier_prod(carrier_out) / energy_eff, so gas
consumption is only a function of power output.

As with the pv, the chp an export eletricity. The revenue gained from this export is given in the file export_power.
csv, in which negative values are given per time step.

Demand technologies

Electricity and heat demand are defined here:

demand_electricity:
essentials:

name: 'Electrical demand'
color: '#072486'
parent: demand
carrier: electricity

demand_heat:
essentials:

name: 'Heat demand'
color: '#660507'
parent: demand
carrier: heat

Electricity and heat demand are technologies like any other. We will associate an actual demand time series with each
demand technology later.

40 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Transmission technologies

In this district, electricity and heat can be distributed between locations. Gas is made available in each location without
consideration of transmission.

Fig. 12: A simple transmission node with an 𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓 .

power_lines:
essentials:

name: 'Electrical power distribution'
color: '#6783E3'
parent: transmission
carrier: electricity

constraints:
energy_cap_max: 2000
energy_eff: 0.98
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap_per_distance: 0.01

heat_pipes:
essentials:

name: 'District heat distribution'
color: '#823739'
parent: transmission
carrier: heat

constraints:
energy_cap_max: 2000
energy_eff_per_distance: 0.975
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap_per_distance: 0.3

power_lines has an efficiency of 0.95, so a loss during transmission of 0.05. heat_pipes has a loss rate per
unit distance of 2.5%/unit distance (or energy_eff_per_distance of 97.5%). Over the distance between the
two locations of 0.5km (0.5 units of distance), this translates to 2.50.5 = 1.58% loss rate.

Locations

In order to translate the model requirements shown in this section’s introduction into a model definition, four locations
are used: X1, X2, X3, and N1.

The technologies are set up in these locations as follows:

Fig. 13: Locations and their technologies in the urban-scale example model

Let’s now look at the first location definition:

1.7. Tutorials 41

Calliope Documentation, Release 0.6.0

X1:
techs:

chp:
pv:
supply_grid_power:

costs.monetary.energy_cap: 100 # cost of transformers
supply_gas:
demand_electricity:

constraints.resource: file=demand_power.csv
demand_heat:

constraints.resource: file=demand_heat.csv
available_area: 500
coordinates: {x: 2, y: 7}

There are several things to note here:

• The location specifies a dictionary of technologies that it allows (techs), with each key of the dictionary
referring to the name of technologies defined in our techs.yaml file. Note that technologies listed here must
have been defined elsewhere in the model configuration.

• It also overrides some options for both demand_electricity, demand_heat, and
supply_grid_power. For the latter, it simply sets a location-specific cost. For demands, the op-
tions set here are related to reading the demand time series from a CSV file. CSV is a simple text-based
format that stores tables by comma-separated rows. Note that we did not define any resource option in the
definition of these demands. Instead, this is done directly via a location-specific override. For this location, the
files demand_heat.csv and demand_power.csv are loaded. As no column is specified (see national
scale example model) Calliope will assume that the column name matches the location name X1. Note that in
Calliope, a supply is positive and a demand is negative, so the stored CSV data will be negative.

• Coordinates are defined by cartesian coordinates x and y, which will be used to calculate distance of transmis-
sion lines (unless we specify otherwise later on) and for location-based visualisation. These coordinates are
abstract, unlike latitude and longitude, and can be used when we don’t know (or care) about the geographical
location of our problem.

• An available_area is defined, which will limit the maximum area of all resource_area technologies
to the e.g. roof space available at our location. In this case, we just have pv, but the case where solar thermal
panels compete with photovoltaic panels for space, this would the sum of the two to the available area.

The remaining location definitions look like this:

X2:
techs:

boiler:
costs.monetary.energy_cap: 43.1 # different boiler costs

pv:
costs.monetary:

om_prod: -0.0203 # revenue for just producing electricity
export: -0.0491 # FIT return for PV export

supply_gas:
demand_electricity:

constraints.resource: file=demand_power.csv
demand_heat:

constraints.resource: file=demand_heat.csv
available_area: 1300
coordinates: {x: 8, y: 7}

X3:
techs:

(continues on next page)

42 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

boiler:
costs.monetary.energy_cap: 78 # different boiler costs

pv:
constraints:

energy_cap_max: 50 # changing tariff structure below 50kW
costs.monetary:

om_annual: -80.5 # reimbursement per kWp from FIT
supply_gas:
demand_electricity:

constraints.resource: file=demand_power.csv
demand_heat:

constraints.resource: file=demand_heat.csv
available_area: 900
coordinates: {x: 5, y: 3}

X2 and X3 are very similar to X1, except that they do not connect to the national electricity grid, nor do they contain
the chp technology. Specific pv cost structures are also given, emulating e.g. commercial vs. domestic feed-in tariffs.

N1 differs to the others by virtue of containing no technologies. It acts as a branching station for the heat network,
allowing connections to one or both of X2 and X3 without double counting the pipeline from X1 to N1. Its definition
look like this:

N1: # location for branching heat transmission network
coordinates: {x: 5, y: 7}

For transmission technologies, the model also needs to know which locations can be linked, and this is set up in the
model configuration as follows:

X1,X2:
techs:

power_lines:
distance: 10

X1,X3:
techs:

power_lines:
X1,N1:

techs:
heat_pipes:

N1,X2:
techs:

heat_pipes:
N1,X3:

techs:
heat_pipes:

The distance measure for the power line is larger than the straight line distance given by the coordinates of X1 and X2,
so we can provide more information on non-direct routes for our distribution system. These distances will override
any automatic straight-line distances calculated by coordinates.

Revenue by export

Defined for both PV and CHP, there is the option to accrue revenue in the system by exporting electricity. This export
is considered as a removal of the energy carrier electricity from the system, in exchange for negative cost (i.e.
revenue). To allow this, carrier_export: electricity has been given under both technology definitions
and an export value given under costs.

1.7. Tutorials 43

Calliope Documentation, Release 0.6.0

The revenue from PV export varies depending on location, emulating the different feed-in tariff structures in the UK for
commercial and domestic properties. In domestic properties, the revenue is generated by simply having the installation
(per kW installed capacity), as export is not metered. Export is metered in commercial properties, thus revenue
is generated directly from export (per kWh exported). The revenue generated by CHP depends on the electricity
grid wholesale price per kWh, being 80% of that. These revenue possibilities are reflected in the technologies’ and
locations’ definitions.

Running the model

We now take you through running the model in a Jupyter notebook, which is included fully below. To download and
run the notebook yourself, you can find it here. You will need to have Calliope installed.

1.7.3 Tutorial 3: Mixed Integer Linear Programming

This example is based on the urban scale example model, but with an override. An override file exists in which binary
and integer decision variables are triggered, creating a MILP model, rather than the conventional Calliope LP model.

Warning: Integer and Binary variables are still experimental and may not cover all edge cases as intended. Please
raise an issue on GitHub if you see unexpected behaviour.

Units

The capacity of a technology is usually a continuous decision variable, which can be within the range of 0 and
energy_cap_max (the maximum capacity of a technology). In this model, we introduce a unit limit on the CHP
instead:

chp:
constraints:

units_max: 4
energy_cap_per_unit: 300
energy_cap_min_use: 0.2

costs:
monetary:

energy_cap: 700
purchase: 40000

A unit maximum allows a discrete, integer number of CHP to be purchased, each having a capacity of
energy_cap_per_unit. Any of energy_cap_max, energy_cap_min, or energy_cap_equals are
now ignored, in favour of units_max, units_min, or units_equals. A useful feature unlocked by introduc-
ing this is the ability to set a minimum operating capacity which is only enforced when the technology is operating.
In the LP model, energy_cap_min_use would force the technology to operate at least at that proportion of its
maximum capacity at each time step. In this model, the newly introduced energy_cap_min_use of 0.2 will ensure
that the output of the CHP is 20% of its maximum capacity in any time step in which it has a non-zero output.

Purchase cost

The boiler does not have a unit limit, it still utilises the continuous variable for its capacity. However, we have
introduced a purchase cost:

44 Chapter 1. User guide

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.6.0/_static/notebooks/urban_scale.ipynb
https://github.com/calliope-project/calliope/issues

Calliope Documentation, Release 0.6.0

boiler:
costs:

monetary:
energy_cap: 35
purchase: 2000

By introducing this, the boiler now has a binary decision variable associated with it, which is 1 if the boiler has a
non-zero energy_cap (i.e. the optimisation results in investment in a boiler) and 0 if the capacity is 0. The purchase
cost is applied to the binary result, providing a fixed cost on purchase of the technology, irrespective of the technology
size. In physical terms, this may be associated with the cost of pipework, land purchase, etc. The purchase cost is also
imposed on the CHP, which is applied to the number of integer CHP units in which the solver chooses to invest.

MILP functionality can be easily applied, but convergence is slower as a result of integer/binary variables. It is
recommended to use a commercial solver (e.g. Gurobi, CPLEX) if you wish to utilise these variables outside this
example model.

Running the model

We now take you through running the model in a Jupyter notebook, which is included fully below. To download and
run the notebook yourself, you can find it here. You will need to have Calliope installed.

1.8 More info

This section, as the title suggests, contains more info and more details, and in particular, information on some of
Calliope’s more advanced functionality.

We suggest you read the Building a model, Running a model and Analysing a model sections first.

1.8.1 Advanced functionality

Per-distance constraints and costs

Transmission technologies can additionally specify per-distance efficiency (loss) with
energy_eff_per_distance and per-distance costs with energy_cap_per_distance:

techs:
my_transmission_tech:

essentials:
...

constraints:
"efficiency" (1-loss) per unit of distance
energy_eff_per_distance: 0.99

costs:
monetary:

cost per unit of distance
energy_cap_per_distance: 10

The distance is specified in transmission links:

links:
location1,location2:

my_transmission_tech:
(continues on next page)

1.8. More info 45

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.6.0/_static/notebooks/milp.ipynb

Calliope Documentation, Release 0.6.0

(continued from previous page)

distance: 500
constraints:

e_cap.max: 10000

If no distance is given, but the locations have been given lat and lon coordinates, Calliope will compute distances
automatically (based on the length of a straight line connecting the locations).

One-way transmission links

Transmission links are bidirectional by default. To force unidirectionality for a given technology along a given link,
you have to set the one_way constraint in the constraint definition of that technology, for that link:

links:
location1,location2:

transmission-tech:
constraints:

one_way: true

This will only allow transmission from location1 to location2. To swap the direction, the link name must be
inverted, i.e. location2,location1.

Time series data

Note: If a parameter is not explicit in time and space, it can be specified as a single value in the model definition (or,
using location-specific definitions, be made spatially explicit). This applies both to parameters that never vary through
time (for example, cost of installed capacity) and for those that may be time-varying (for example, a technology’s
available resource).

For parameters that vary in time, time series data can be read from CSV files, by specifying resource:
file=filename.csv to pick the desired CSV file from within the configured timeseries data path (model.
timeseries_data_path).

By default, Calliope looks for a column in the CSV file with the same name as the location. It is also possible to
specify a column too use when setting resource per location, by giving the column name with a colon following
the filename: resource: file=filename.csv:column

All time series data in a model must be indexed by ISO 8601 compatible time stamps (usually in the format
YYYY-MM-DD hh:mm:ss, e.g. 2005-01-01 00:00:00), i.e., the first column in the CSV file must be time
stamps.

For example, the first few lines of a CSV file giving a resource potential for two locations might look like this:

,location1,location2
2005-01-01 00:00:00,0,0
2005-01-01 01:00:00,0,11
2005-01-01 02:00:00,0,18
2005-01-01 03:00:00,0,49
2005-01-01 04:00:00,11,110
2005-01-01 05:00:00,45,300
2005-01-01 06:00:00,90,458

46 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Time resolution adjustment

Models have a default timestep length (defined implicitly by the timesteps of the model’s time series data). This
default resolution can be adjusted over parts of the dataset by specifying time resolution adjustment in the model
configuration, for example:

model:
time:

function: resample
function_options: {'resolution': '6H'}

In the above example, this would resample all time series data to 6-hourly timesteps.

Calliope’s time resolution adjustment functionality allows running a function that can perform arbitrary adjustments
to the time series data in the model.

The available options include:

1. Uniform time resolution reduction through the resample function, which takes a pandas-compatible rule
describing the target resolution (see above example).

2. Deriving representative days from the input time series, by applying the clustering method implemented in
calliope.time.clustering, for example:

model:
time:

function: apply_clustering
function_options:

clustering_func: kmeans
how: mean
k: 20

3. Heuristic selection of time steps, that is, the application of one or more of the masks defined in calliope.
time.masks, which will mark areas of the time series to retain at maximum resolution (unmasked) and areas
where resolution can be lowered (masked). Options can be passed to the masking functions by specifying
options. A time.function can still be specified and will be applied to the masked areas (i.e. those areas
of the time series not selected to remain at the maximum resolution), as in this example, which looks for the
week of minimum and maximum potential wind generation (assuming a wind technology was specified), then
reduces the rest of the input time series to 6-hourly resolution:

model:
time:

masks:
- {function: extreme, options: {padding: 'calendar_week', tech: 'wind',

→˓how: 'max'}}
- {function: extreme, options: {padding: 'calendar_week', tech: 'wind',

→˓how: 'min'}}
function: resample
function_options: {'resolution': '6H'}

Warning: When using time clustering or time masking, the resulting timesteps will be assigned different weights
depending on how long a period of time they represent. Weights are used for example to give appropriate weight
to the operational costs of aggregated typical days in comparison to individual extreme days, if both exist in the
same processed time series. The weighting is accessible in the model data, e.g. through Model.inputs.
timestep_weights. The interpretation of results when weights are not 1 for all timesteps requires caution.
Production values are not scaled according to weights, but costs are multiplied by weight, in order to weight

1.8. More info 47

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html

Calliope Documentation, Release 0.6.0

different timesteps appropriately in the objective function. This means that costs and production values are not
consistent without manually post-processing them by either multipyling production by weight (production would
then be inconsistent with capacity) or dividing costs by weight. The computation of levelised costs and of capacity
factors takes weighting into account, so these values are consisten and can be used as usual.

See also:

See the implementation of constraints in calliope.backend.pyomo.constraints for more detail on
timestep weights and how they affect model constraints.

The supply_plus tech

The plus tech groups offer complex functionality, for technologies which cannot be described easily.
Supply_plus allows a supply technology with internal storage of resource before conversion to the carrier hap-
pens. This could be emulated with dummy carriers and a combination of supply, storage, and conversion techs, but
the supply_plus tech allows for concise and mathematically more efficient formulation.

Fig. 14: Representation of the supply_plus technology

An example use of supply_plus is to define a concentrating solar power (CSP) technology which consumes a solar
resource, has built-in thermal storage, and produces electricity. See the national-scale built-in example model for an
application of this.

See the listing of supply_plus configuration in the abstract base tech group definitions for the additional constraints
that are possible.

Warning: When analysing results from supply_plus, care must be taken to correctly account for the losses
along the transformation from resource to carrier. For example, charging of storage from the resource may have
a resource_eff-associated loss with it, while discharging storage to produce the carrier may have a different
loss resulting from a combination of energy_eff and parasitic_eff. Such intermediate conversion losses
need to be kept in mind when comparing discharge from storage with carrier_prod in the same time step.

The conversion_plus tech

The plus tech groups offer complex functionality, for technologies which cannot be described easily.
Conversion_plus allows several carriers to be converted to several other carriers. Describing such a technol-
ogy requires that the user understands the carrier_ratios, i.e. the interactions and relative efficiencies of carrier
inputs and outputs.

Fig. 15: Representation of the most complex conversion_plus technology available

The conversion_plus technologies allows for up to three carrier groups as inputs (carrier_in,
carrier_in_2 and carrier_in_3) and up to three carrier groups as outputs (carrier_out,
carrier_out_2 and carrier_out_3). A carrier group can contain any number of carriers.

The efficiency of a conversion_plus tech dictates how many units of carrier_out are produced per unit of
consumed carrier_in. A unit of carrier_out_2 and of carrier_out_3 is produced each time a unit of carrier_out
is produced. Similarly, a unit of Carrier_in_2 and of carrier_in_3 is consumed each time a unit of carrier_in is
consumed. Within a given carrier group (e.g. carrier_out_2) any number of carriers can meet this one unit. The

48 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

carrier_ratio of any carrier compares it either to the production of one unit of carrier_out or to the consumption
of one unit of carrier_in.

In this section, we give examples of a few conversion_plus technologies alongside the YAML formulation
required to construct them:

Combined heat and power

A combined heat and power plant produces electricity, in this case from natural gas. Waste heat that is produced can
be used to meet nearby heat demand (e.g. via district heating network). For every unit of electricity produced, 0.8
units of heat are always produced. This is analogous to the heat to power ratio (HTP). Here, the HTP is 0.8.

chp:
essentials:

name: Combined heat and power
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat
primary_carrier: electricity

constraints:
energy_eff: 0.45
energy_cap_max: 100
carrier_ratios.carrier_out_2.heat: 0.8

Air source heat pump

The output energy from the heat pump can be either heat or cooling, simulating a heat pump that can be useful in
both summer and winter. For each unit of electricity input, one unit of output is produced. Within this one unit of
carrier_out, there can be a combination of heat and cooling. Heat is produced with a COP of 5, cooling with a
COP of 3. If only heat were produced in a timestep, 5 units of it would be available in carrier_out; similarly 3 units
for cooling. In another timestep, both heat and cooling might be produced with e.g. 2.5 units heat + 1.5 units cooling
= 1 unit of carrier_out.

ahp:
essentials:

name: Air source heat pump
carrier_in: electricity
carrier_out: [heat, cooling]
primary_carrier: heat

constraints:
energy_eff: 1
energy_cap_max: 100
carrier_ratios:

carrier_out:
heat: 5
cooling: 3

1.8. More info 49

Calliope Documentation, Release 0.6.0

Combined cooling, heat and power (CCHP)

A CCHP plant can use generated heat to produce cooling via an absorption chiller. As with the CHP plant, electricity
is produced at 45% efficiency. For every unit of electricity produced, 1 unit of carrier_out_2 must be produced,
which can be a combination of 0.8 units of heat and 0.5 units of cooling. Some example ways in which the model
could decide to operate this unit in a given time step are:

• 1 unit of gas (carrier_in) is converted to 0.45 units of electricity (carrier_out) and (0.8 * 0.45) units
of heat (carrier_out_2)

• 1 unit of gas is converted to 0.45 units electricity and (0.5 * 0.45) units of cooling

• 1 unit of gas is converted to 0.45 units electricity, (0.3 * 0.8 * 0.45) units of heat, and (0.7 * 0.5 * 0.45) units of
cooling

cchp:
essentials:

name: Combined cooling, heat and power
carrier_in: gas
carrier_out: electricity
carrier_out_2: [heat, cooling]
primary_carrier: electricity

constraints:
energy_eff: 0.45
energy_cap_max: 100
carrier_ratios.carrier_out_2: {heat: 0.8, cooling: 0.5}

Advanced gas turbine

This technology can choose to burn methane (CH:sub:4) or send hydrogen (H:sub:2) through a fuel cell to produce
electricity. One unit of carrier_in can be met by any combination of methane and hydrogen. If all methane, 0.5 units
of carrier_out would be produced for 1 unit of carrier_in (energy_eff). If all hydrogen, 0.25 units of carrier_out would
be produced for the same amount of carrier_in (energy_eff * hydrogen carrier ratio).

gt:
essentials:

name: Advanced gas turbine
carrier_in: [methane, hydrogen]
carrier_out: electricity

constraints:
energy_eff: 0.5
energy_cap_max: 100
carrier_ratios:

carrier_in: {methane: 1, hydrogen: 0.5}

Complex fictional technology

There are few instances where using the full capacity of a conversion_plus tech is physically possible. Here, we
have a fictional technology that combines fossil fuels with biomass/waste to produce heat, cooling, and electricity.
Different ‘grades’ of heat can be produced, the higher grades having an alternative. High grade heat (high_T_heat)

50 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

is produced and can be used directly, or used to produce electricity (via e.g. organic rankine cycle). carrier_out
is thus a combination of these two. carrier_out_2 can be 0.3 units mid grade heat for every unit carrier_out or 0.2
units cooling. Finally, 0.1 units carrier_out_3, low grade heat, is produced for every unit of carrier_out.

complex:
essentials:

name: Complex fictional technology
carrier_in: [coal, gas, oil]
carrier_in_2: [biomass, waste]
carrier_out: [high_T_heat, electricity]
carrier_out_2: [mid_T_heat, cooling]
carrier_out_3: low_T_heat
primary_carrier: electricity

constraints:
energy_eff: 1
energy_cap_max: 100
carrier_ratios:

carrier_in: {coal: 1.2, gas: 1, oil: 1.6}
carrier_in_2: {biomass: 1, waste: 1.25}
carrier_out: {high_T_heat: 0.8, electricity: 0.6}
carrier_out_2: {mid_T_heat: 0.3, cooling: 0.2}
carrier_out_3.low_T_heat: 0.15

A primary_carrier must be defined when there are multiple carrier_out values defined.
primary_carrier can be defined as any carrier in a technology’s output carriers (including secondary and
tertiary carriers). The chosen carrier will be the one to which costs are applied.

Note: Conversion_plus technologies can also export any one of their output carriers, by specifying that carrier
as carrier_export.

Revenue and export

It is possible to specify revenues for technologies simply by setting a negative cost value. For example, to consider a
feed-in tariff for PV generation, it could be given a negative operational cost equal to the real operational cost minus
the level of feed-in tariff received.

Export is an extension of this, allowing an energy carrier to be removed from the system without meeting demand.
This is analogous to e.g. domestic PV technologies being able to export excess electricity to the national grid. A cost
(or negative cost: revenue) can then be applied to export.

Note: Negative costs can be applied to capacity costs, but the user must an ensure a capacity limit has been set.
Otherwise, optimisation will be unbounded.

Using tech_groups to group configuration

In a large model, several very similar technologies may exist, for example, different kinds of PV technologies with
slightly different cost data or with different potentials at different model locations.

1.8. More info 51

Calliope Documentation, Release 0.6.0

To make it easier to specify closely related technologies, tech_groups can be used to specify configuration shared
between multiple technologies. The technologies then give the tech_group as their parent, rather than one of the
abstract base technologies.

For example:

tech_groups:
pv:

essentials:
parent: supply
carrier: power

constraints:
resource: file=pv_resource.csv
lifetime: 30

costs:
monetary:

om_annual_investment_fraction: 0.05
depreciation_rate: 0.15

techs:
pv_large_scale:

essentials:
parent: pv
name: 'Large-scale PV'

constraints:
energy_cap_max: 2000

costs:
monetary:

e_cap: 750
pv_rooftop:

essentials:
parent: pv
name: 'Rooftop PV'

constraints:
energy_cap_max: 10000

costs:
monetary:

e_cap: 1000

None of the tech_groups appear in model results, they are only used to group model configuration values.

Using the group_share constraint

The group_share constraint can be used to force groups of technologies to fulfill certain shares of supply or
capacity.

For example, assuming a model containing a csp and a cold_fusion power generation technology, we could force
at least 85% of power generation in the model to come from these two technologies with the following constraint
definition in the model settings:

model:
group_share:

csp,cold_fusion:
carrier_prod_min:

power: 0.85

Possible group_share constraints with carrier-specific settings are:

52 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

• carrier_prod_min

• carrier_prod_max

• carrier_prod_equals

Possible group_share constraints with carrier-independent settings are:

• energy_cap_min

• energy_cap_max

• energy_cap_equals

These can be implemented as, for example, to force at most 20% of energy_cap to come from the two listed
technologies:

model:
group_share:

csp,cold_fusion:
energy_cap_max: 0.20

Note: The share given in the carrier_prod constraints refer to the use of generation from supply and
supply_plus technologies only. The share given in the energy_cap constraints refers to the combined capacity
from supply, supply_plus, conversion, and conversion_plus technologies.

See also:

The above examples are supplied override groups in the built-in national-scale example’s overrides.
yaml (cold_fusion to define that tech, and group_share_cold_fusion_prod or
group_share_cold_fusion_cap to apply the group share constraints).

Removing techs, locations and links

By specifying exists: false in the model configuration, which can be done through override groups, model
components can be removed for debugging or scenario analysis.

This works for:

• Techs: techs.tech_name.exists: false

• Locations: locations.location_name.exists: false

• Links: links.location1,location2.exists: false

• Techs at a specific location: locations.location_name.techs.tech_name.exists: false

• Transmission techs at a specific location: links.location1,location2.techs.
transmission_tech.exists: false

Operational mode

In planning mode, constraints are given as upper and lower boundaries and the model decides on an optimal system
configuration. In operational mode, all capacity constraints are fixed and the system is operated with a receding
horizon control algorithm.

To specify a runnable operational model, capacities for all technologies at all locations must have be defined. This
can be done by specifying energy_cap_equals. In the absence of energy_cap_equals, constraints given as
energy_cap_max are assumed to be fixed in operational mode.

1.8. More info 53

Calliope Documentation, Release 0.6.0

Operational mode runs a model with a receding horizon control algorithm. This requires two additional settings:

run:
operation:

horizon: 48 # hours
window: 24 # hours

horizon specifies how far into the future the control algorithm optimises in each iteration. window specifies how
many of the hours within horizon are actually used. In the above example, decisions on how to operate for each
24-hour window are made by optimising over 48-hour horizons (i.e., the second half of each optimisation run is
discarded). For this reason, horizon must always be larger than window.

Generating scripts to run a model many times

Override groups can be used to run a given model multiple times with slightly changed settings or constraints.

This functionality can be used together with the calliope generate_runs command-line tool to generate
scripts that run a model many times over in a fully automated way, for example, to explore the effect of different
technology costs on model results.

calliope generate_runs, at a minimum, must be given the following arguments:

• the model configuration file to use

• the name of the script to create

• --kind: Currently, three options are available. windows creates a Windows batch (.bat) script that runs
all models sequentially, bash creates an equivalent script to run on Linux or macOS, and bsub creates a
submission script for a bsub-based high-performance cluster.

• --override_file: The file that specifies override groups.

• --groups: A semicolon-separated list of override groups to generate scripts for, for example, run1;run2.
A comma is used to group override groups together into a single model – for example, run1,high_costs;
run1,low_costs would run the model twice, once applying the run1 and high_costs override groups,
and once applying run1 and low_costs.

A fully-formed command generating a Windows batch script to run a model four times with each of the override
groups “run1”, “run2”, “run3”, and “run4”:

calliope generate_runs model.yaml run_model.bat --kind=windows --override_
→˓file=overrides.yaml --groups "run1;run2;run3;run4"

Optional arguments are:

• --cluster_threads: specifies the number of threads to request on a HPC cluster

• --cluster_mem: specifies the memory to request on a HPC cluster

• --cluster_time: specifies the run time to request on a HPC cluster

• --additional_args: A text string of any additional arguments to pass directly through to calliope
run in the generated scripts, for example, --additional_args="--debug".

• --debug: Print additional debug information when running the run generation script.

An example generating a script to run on a bsub-type high-performance cluster, with additional arguments to specify
the resources to request from the cluster:

calliope generate_runs model.yaml submit_runs.sh --kind=bsub --cluster_mem=1G --
→˓cluster_time=100 --cluster_threads=5 --override_file=overrides.yaml --groups "run1,
→˓run2,run3,run4" (continues on next page)

54 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

Running this will create two files:

• submit_runs.sh: The cluster submission script to pass to bsub on the cluster.

• submit_runs.array.sh: The accompanying script defining the runs for the cluster to execute.

In all cases, results are saved into the same directory as the script, with filenames of the form
out_{run_number}_{groups}.nc (model results) and plots_{run_number}_{groups}.html
(HTML plots), where {run_number} is the run number and {groups} is the specified set of groups. On a cluster,
log files are saved to files with names starting with log_ in the same directory.

Binary and mixed-integer models

Calliope models are purely linear by default. However, several constraints can turn a model into a binary or mixed-
integer model. Because solving problems with binary or integer variables takes considerably longer than solving
purely linear models, it usually makes sense to carefully consider whether the research question really necessitates
going beyond a purely linear model.

By applying a purchase cost to a technology, that technology will have a binary variable associated with it, describ-
ing whether or not it has been “purchased”.

By applying units.max, units.min, or units.equals to a technology, that technology will have a integer
variable associated with it, describing how many of that technology have been “purchased”. If a purchase cost has
been applied to this same technology, the purchasing cost will be applied per unit.

Warning: Integer and binary variables are a recent addition to Calliope and may not cover all edge cases as
intended. Please raise an issue on GitHub if you see unexpected behavior.

See also:

Tutorial 3: Mixed Integer Linear Programming

Interfacing with the solver backend

On loading a model, there is no solver backend, only the input dataset. The backend is generated when a user calls
run() on their model. Currently this will call back to Pyomo to build the model and send it off to the solver, given by
the user in the run configuration run.solver. Once built, solved, and returned, the user has access to the results
dataset model.results and interface functions with the backend model.backend.

You can use this interface to:

1. Get the raw data on the inputs used in the optimisation. By running model.backend.
get_input_params() a user get an xarray Dataset which will look very similar to model.inputs,
except that assumed default values will be included. You may also spot a bug, where a value in
model.inputs is different to the value returned by this function.

2. Update a parameter value. If you are interested in updating a few values in the model, ou can run
model.backend.update_param() . For example, to update your the energy efficiency
of your ccgt technology in location region1 from 0.5 to 0.1, you can run model.backend.
update_param('energy_eff', 'region1::ccgt`, 0.1). This will not affect results at this
stage, you’ll need to rerun the backend (point 4) to optimise with these new values.

1.8. More info 55

https://github.com/calliope-project/calliope/issues

Calliope Documentation, Release 0.6.0

3. Activate / Deactivate a constraint or objective. Constraints can be activated and deactivate such that they will
or will not have an impact on the optimisation. All constraints are active by default, but you might like to
remove, for example, a capacity constraint if you don’t want there to be a capacity limit for any technolo-
gies. Similarly, if you had multiple objectives, you could deactivate one and activate another. The result
would be to have a different objective when rerunning the backend.

Note: Currently Calliope does not allow you to build multiple objectives, you will need to understand Pyomo and add
an additional objective yourself to make use of this functionality. The Pyomo ConcreteModel() object can be accessed
at model._backend_model.

4. Rerunning the backend. If you have edited parameters or constraint activation, you will need to rerun the
optimisation to propagate the effects. By calling model.backend.rerun(), the optimisation will
run again, with the updated backend. This will not affect your model, but instead will return a dataset
of the inputs/results associated with that specific rerun. It is up to you to store this dataset as you
see fit. model.results will remain to be the initial run, and can only be overwritten by model.
run(force_rerun=True).

Note: By calling model.run(force_rerun=True) any updates you have made to the backend will be over-
written.

See also:

Pyomo backend interface

Debugging failing runs

Several settings can aid in debugging failing models:

model.subset_time allows specifying a subset of timesteps to be used. This can be useful for debugging pur-
poses as it can dramatically speed up model solution times. The timestep subset can be specified as [startdate,
enddate], e.g. ['2005-01-01', '2005-01-31'], or as a single time period, such as 2005-01 to select
January only. The subsets are processed before building the model and applying time resolution adjustments, so time
resolution reduction functions will only see the reduced set of data.

run.save_logs Off by default, if given, sets the directory into which to save logs and temporary files from the
backend, to inspect solver logs and solver-generated model files. This also turns on symbolic solver labels in the Pyomo
backend, so that all model components in the backend model are named according to the corresponding Calliope model
components (by default, Pyomo uses short random names for all generated model components).

See also:

If using Calliope interactively in a Python session, we recommend reading up on the Python debugger and (if using
Jupyter notebooks) making use of the %debug magic.

Solver options

Gurobi

Refer to the Gurobi manual, which contains a list of parameters. Simply use the names given in the documentation
(e.g. “NumericFocus” to set the numerical focus value). For example:

56 Chapter 1. User guide

http://www.pyomo.org/documentation/
https://docs.python.org/3/library/pdb.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-debug
https://www.gurobi.com/documentation/

Calliope Documentation, Release 0.6.0

run:
solver: gurobi
solver_options:

Threads: 3
NumericFocus: 2

CPLEX

Refer to the CPLEX parameter list. Use the “Interactive” parameter names, replacing any spaces with underscores
(for example, the memory reduction switch is called “emphasis memory”, and thus becomes “emphasis_memory”).
For example:

run:
solver: cplex
solver_options:

mipgap: 0.01
mip_polishafter_absmipgap: 0.1
emphasis_mip: 1
mip_cuts: 2
mip_cuts_cliques: 3

1.8.2 Built-in example models

This section gives a listing of all the YAML configuration files included in the built-in example models. Refer to the
tutorials section for a brief overview of how these parts together provide a working model.

The example models are accessible in the calliope.examples module. To create an instance of an example
model, call its constructor function, e.g.:

urban_model = calliope.examples.urban_scale()

The available example models and their constructor functions are:

calliope.examples.national_scale(*args, **kwargs)
Returns the built-in national-scale example model.

calliope.examples.time_clustering(*args, **kwargs)
Returns the built-in national-scale example model with time clustering.

calliope.examples.time_resampling(*args, **kwargs)
Returns the built-in national-scale example model with time resampling.

calliope.examples.urban_scale(*args, **kwargs)
Returns the built-in urban-scale example model.

calliope.examples.milp(*args, **kwargs)
Returns the built-in urban-scale example model with MILP constraints enabled.

calliope.examples.operate(*args, **kwargs)
Returns the built-in urban-scale example model in operate mode.

calliope.examples.time_masking(*args, **kwargs)
Returns the built-in urban-scale example model with time masking.

1.8. More info 57

https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.5.0/com.ibm.cplex.zos.help/Parameters/topics/introListAlpha.html

Calliope Documentation, Release 0.6.0

National-scale example

Available as calliope.examples.national_scale.

Model settings

The layout of the model directory is as follows (+ denotes directories, - files):

- model.yaml
- overrides.yaml
+ timeseries_data

- csp_resource.csv
- demand-1.csv
- demand-2.csv

+ model_config
- locations.yaml
- techs.yaml

model.yaml:

import: # Import other files from paths relative to this file, or absolute paths
- 'model_config/techs.yaml'
- 'model_config/locations.yaml'

model:
name: National-scale example model

What version of Calliope this model is intended for
calliope_version: 0.6.0

Time series data path - can either be a path relative to this file, or an
→˓absolute path

timeseries_data_path: 'timeseries_data'

subset_time: ['2005-01-01', '2005-01-05'] # Subset of timesteps

run:
solver: glpk

ensure_feasibility: true # Switching on unmet demand

bigM: 1e6 # setting the scale of unmet demand, which cannot be too high,
→˓otherwise the optimisation will not converge

zero_threshold: 1e-10 # Any value coming out of the backend that is smaller than
→˓this (due to floating point errors, probably) will be set to zero

mode: plan # Choices: plan, operate

overrides.yaml:

##
Overrides for different example model configuratiions
##

profiling:
(continues on next page)

58 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

model.name: 'National-scale example model (profiling run)'
model.subset_time: ['2005-01-01', '2005-01-15']
run.solver: glpk

time_resampling:
model.name: 'National-scale example model with time resampling'
model.subset_time: '2005-01'
Resample time resolution to 6-hourly
model.time: {function: resample, function_options: {'resolution': '6H'}}

time_clustering:
model.random_seed: 23
model.name: 'National-scale example model with time clustering'
model.subset_time: null # No time subsetting
Cluster timesteps using k-means
model.time: {function: apply_clustering, function_options: {clustering_func:

→˓'kmeans', how: 'closest', k: 10}}

operate_mode:
run.mode: operate
run.operation:

window: 12
horizon: 24

techs.csp.constraints.charge_rate: 0.0162857697 # energy_cap_max / storage_cap_max
techs.csp.constraints.energy_cap_max: null
techs.battery.constraints.storage_cap_max: null

check_feasibility:
run:

ensure_feasibility: False
objective: 'check_feasibility'

model:
subset_time: '2005-01-04'

reserve_margin:
model:

Model-wide settings for the system-wide reserve margin
Even setting a reserve margin of zero activates the constraint,
forcing enough installed capacity to cover demand in
the maximum demand timestep
reserve_margin:

power: 0.10 # 10% reserve margin for power

##
Overrides to demonstrate the run generator ("calliope generate_runs")
##

run1:
model.subset_time: ['2005-01-01', '2005-01-31']

run2:
model.subset_time: ['2005-02-01', '2005-02-31']

run3:
model.subset_time: ['2005-01-01', '2005-01-31']
locations.region1.techs.ccgt.constraints.energy_cap_max: 0 # Disallow CCGT

run4:
subset_time: ['2005-02-01', '2005-02-31']
locations.region1.techs.ccgt.constraints.energy_cap_max: 0 # Disallow CCGT

(continues on next page)

1.8. More info 59

Calliope Documentation, Release 0.6.0

(continued from previous page)

##
Overrides to demonstrate the group_share constraints
##

cold_fusion: # Defines a hypothetical cold fusion tech to use in group_share
techs:

cold_fusion:
essentials:

name: 'Cold fusion'
color: '#233B39'
parent: supply
carrier_out: power

constraints:
energy_cap_max: 10000
lifetime: 50

costs:
monetary:

interest_rate: 0.20
energy_cap: 100

locations.region1.techs.cold_fusion: null
locations.region2.techs.cold_fusion: null

group_share_cold_fusion_prod:
model:

group_share:
At least 85% of power supply must come from CSP and cold fusion together
csp,cold_fusion:

carrier_prod_min:
power: 0.85

group_share_cold_fusion_cap:
model:

group_share:
At most 20% of total energy_cap can come from CSP and cold fusion

→˓together
csp,cold_fusion:

energy_cap_max: 0.20
locations:

region1:
techs:

ccgt:
constraints:

energy_cap_max: 100000 # Increased to keep model feasible

techs.yaml:

##
TECHNOLOGY DEFINITIONS
##

Note: '-start' and '-end' is used in tutorial documentation only

techs:

##
Supply

(continues on next page)

60 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

##

ccgt-start
ccgt:

essentials:
name: 'Combined cycle gas turbine'
color: '#E37A72'
parent: supply
carrier_out: power

constraints:
resource: inf
energy_eff: 0.5
energy_cap_max: 40000 # kW
energy_cap_max_systemwide: 100000 # kW
energy_ramping: 0.8
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 750 # USD per kW
om_con: 0.02 # USD per kWh

ccgt-end

csp-start
csp:

essentials:
name: 'Concentrating solar power'
color: '#F9CF22'
parent: supply_plus
carrier_out: power

constraints:
storage_cap_max: 614033
charge_rate: 1
storage_loss: 0.002
resource: file=csp_resource.csv
energy_eff: 0.4
parasitic_eff: 0.9
resource_area_max: inf
energy_cap_max: 10000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
storage_cap: 50
resource_area: 200
resource_cap: 200
energy_cap: 1000
om_prod: 0.002

csp-end

##
Storage
##
battery-start
battery:

essentials:
name: 'Battery storage'

(continues on next page)

1.8. More info 61

Calliope Documentation, Release 0.6.0

(continued from previous page)

color: '#3B61E3'
parent: storage
carrier: power

constraints:
energy_cap_max: 1000 # kW
storage_cap_max: inf
charge_rate: 4
energy_eff: 0.95 # 0.95 * 0.95 = 0.9025 round trip efficiency
storage_loss: 0 # No loss over time assumed
lifetime: 25

costs:
monetary:

interest_rate: 0.10
storage_cap: 200 # USD per kWh storage capacity

battery-end

##
Demand
##
demand-start
demand_power:

essentials:
name: 'Power demand'
color: '#072486'
parent: demand
carrier: power

demand-end

##
Transmission
##

transmission-start
ac_transmission:

essentials:
name: 'AC power transmission'
color: '#8465A9'
parent: transmission
carrier: power

constraints:
energy_eff: 0.85
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 200
om_prod: 0.002

free_transmission:
essentials:

name: 'Local power transmission'
color: '#6783E3'
parent: transmission
carrier: power

constraints:
energy_cap_max: inf
energy_eff: 1.0

(continues on next page)

62 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

costs:
monetary:

om_prod: 0
transmission-end

locations.yaml:

##
LOCATIONS
##

locations:
region-1-start
region1:

coordinates: {lat: 40, lon: -2}
techs:

demand_power:
constraints:

resource: file=demand-1.csv:demand
ccgt:

constraints:
energy_cap_max: 30000 # increased to ensure no unmet_demand in

→˓first timestep
region-1-end
other-locs-start
region2:

coordinates: {lat: 40, lon: -8}
techs:

demand_power:
constraints:

resource: file=demand-2.csv:demand
battery:

region1-1.coordinates: {lat: 41, lon: -2}
region1-2.coordinates: {lat: 39, lon: -1}
region1-3.coordinates: {lat: 39, lon: -2}

region1-1, region1-2, region1-3:
techs:

csp:
other-locs-end

##
TRANSMISSION CAPACITIES
##

links:
links-start
region1,region2:

techs:
ac_transmission:

constraints:
energy_cap_max: 10000

region1,region1-1:
techs:

free_transmission:
region1,region1-2:

(continues on next page)

1.8. More info 63

Calliope Documentation, Release 0.6.0

(continued from previous page)

techs:
free_transmission:

region1,region1-3:
techs:

free_transmission:
links-end

Urban-scale example

Available as calliope.examples.urban_scale.

Model settings

model.yaml:

import: # Import other files from paths relative to this file, or absolute paths
- 'model_config/techs.yaml'
- 'model_config/locations.yaml'

model:
name: Urban-scale example model

What version of Calliope this model is intended for
calliope_version: 0.6.0

Time series data path - can either be a path relative to this file, or an
→˓absolute path

timeseries_data_path: 'timeseries_data'

subset_time: ['2005-07-01', '2005-07-02'] # Subset of timesteps

run:
mode: plan # Choices: plan, operate

solver: glpk

ensure_feasibility: true # Switching on unmet demand

bigM: 1e6 # setting the scale of unmet demand, which cannot be too high,
→˓otherwise the optimisation will not converge

overrides.yaml:

##
Overrides for different example model configuratiions
##

milp:
model.name: 'Urban-scale example model with MILP'
techs:

chp-start
chp:

constraints:
units_max: 4

(continues on next page)

64 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

energy_cap_per_unit: 300
energy_cap_min_use: 0.2

costs:
monetary:

energy_cap: 700
purchase: 40000

chp-end
boiler-start
boiler:

costs:
monetary:

energy_cap: 35
purchase: 2000

boiler-end

mapbox_ready:
locations:

X1.coordinates: {lat: 51.4596158, lon: -0.1613446}
X2.coordinates: {lat: 51.4652373, lon: -0.1141548}
X3.coordinates: {lat: 51.4287016, lon: -0.1310635}
N1.coordinates: {lat: 51.4450766, lon: -0.1247183}

links:
X1,X2.techs.power_lines.distance: 10
X1,X3.techs.power_lines.istance: 5
X1,N1.techs.heat_pipes.distance: 3
N1,X2.techs.heat_pipes.distance: 3
N1,X3.techs.heat_pipes.distance: 4

operate:
run.mode: operate
run.operation:

window: 24
horizon: 48

model.subset_time: ['2005-07-01', '2005-07-10']
locations:

X1:
techs:

chp.constraints.energy_cap_max: 300
pv.constraints.energy_cap_max: 0
supply_grid_power.constraints.energy_cap_max: 40
supply_gas.constraints.energy_cap_max: 700

X2:
techs:

boiler.constraints.energy_cap_max: 200
pv.constraints.energy_cap_max: 70
supply_gas.constraints.energy_cap_max: 250

X3:
techs:

boiler.constraints.energy_cap_max: 0
pv.constraints.energy_cap_max: 50
supply_gas.constraints.energy_cap_max: 0

links:
X1,X2.techs.power_lines.constraints.energy_cap_max: 300
X1,X3.techs.power_lines.constraints.energy_cap_max: 60

(continues on next page)

1.8. More info 65

Calliope Documentation, Release 0.6.0

(continued from previous page)

X1,N1.techs.heat_pipes.constraints.energy_cap_max: 300
N1,X2.techs.heat_pipes.constraints.energy_cap_max: 250
N1,X3.techs.heat_pipes.constraints.energy_cap_max: 320

time_masking:
model.name: 'Urban-scale example model with time masking'
model.subset_time: '2005-01'
Resample time resolution to 6-hourly
model.time:

masks:
- {function: extreme_diff, options: {tech0: demand_heat, tech1: demand_

→˓electricity, how: max, n: 2}}
function: resample
function_options: {resolution: 6H}

techs.yaml:

##
TECHNOLOGY DEFINITIONS
##

Note: '-start' and '-end' is used in tutorial documentation only

supply_power_plus-start
tech_groups:

supply_power_plus:
essentials:

parent: supply_plus
carrier: electricity

supply_power_plus-end

techs:

##-GRID SUPPLY-##
supply-start
supply_grid_power:

essentials:
name: 'National grid import'
color: '#C5ABE3'
parent: supply
carrier: electricity

constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 15
om_con: 0.1 # 10p/kWh electricity price #ppt

supply_gas:
essentials:

name: 'Natural gas import'
color: '#C98AAD'
parent: supply
carrier: gas

(continues on next page)

66 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

constraints:
resource: inf
energy_cap_max: 2000
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 1
om_con: 0.025 # 2.5p/kWh gas price #ppt

supply-end

##-Renewables-##
pv-start
pv:

essentials:
name: 'Solar photovoltaic power'
color: '#F9D956'
parent: supply_power_plus

constraints:
export_carrier: electricity
resource: file=pv_resource.csv # Already accounts for panel efficiency -

→˓kWh/m2. Source: Renewables.ninja Solar PV Power - Version: 1.1 - License: https://
→˓creativecommons.org/licenses/by-nc/4.0/ - Reference: https://doi.org/10.1016/j.
→˓energy.2016.08.060

parasitic_eff: 0.85 # inverter losses
energy_cap_max: 250
resource_area_max: 1500
force_resource: true
resource_area_per_energy_cap: 7 # 7m2 of panels needed to fit 1kWp of

→˓panels
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 1350

pv-end

Conversion
boiler-start
boiler:

essentials:
name: 'Natural gas boiler'
color: '#8E2999'
parent: conversion
carrier_out: heat
carrier_in: gas

constraints:
energy_cap_max: 600
energy_eff: 0.85
lifetime: 25

costs:
monetary:

interest_rate: 0.10
boiler-end

Conversion_plus
chp-start

(continues on next page)

1.8. More info 67

Calliope Documentation, Release 0.6.0

(continued from previous page)

chp:
essentials:

name: 'Combined heat and power'
color: '#E4AB97'
parent: conversion_plus
primary_carrier: electricity
carrier_in: gas
carrier_out: electricity
carrier_out_2: heat

constraints:
export_carrier: electricity
energy_cap_max: 1500
energy_eff: 0.405
carrier_ratios.carrier_out_2.heat: 0.8
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap: 750
om_prod: 0.004 # .4p/kWh for 4500 operating hours/year
export: file=export_power.csv

chp-end

##-DEMAND-##
demand-start
demand_electricity:

essentials:
name: 'Electrical demand'
color: '#072486'
parent: demand
carrier: electricity

demand_heat:
essentials:

name: 'Heat demand'
color: '#660507'
parent: demand
carrier: heat

demand-end

##-DISTRIBUTION-##
transmission-start
power_lines:

essentials:
name: 'Electrical power distribution'
color: '#6783E3'
parent: transmission
carrier: electricity

constraints:
energy_cap_max: 2000
energy_eff: 0.98
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap_per_distance: 0.01

(continues on next page)

68 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

heat_pipes:
essentials:

name: 'District heat distribution'
color: '#823739'
parent: transmission
carrier: heat

constraints:
energy_cap_max: 2000
energy_eff_per_distance: 0.975
lifetime: 25

costs:
monetary:

interest_rate: 0.10
energy_cap_per_distance: 0.3

transmission-end

locations.yaml:

locations:
X1-start
X1:

techs:
chp:
pv:
supply_grid_power:

costs.monetary.energy_cap: 100 # cost of transformers
supply_gas:
demand_electricity:

constraints.resource: file=demand_power.csv
demand_heat:

constraints.resource: file=demand_heat.csv
available_area: 500
coordinates: {x: 2, y: 7}

X1-end
other-locs-start
X2:

techs:
boiler:

costs.monetary.energy_cap: 43.1 # different boiler costs
pv:

costs.monetary:
om_prod: -0.0203 # revenue for just producing electricity
export: -0.0491 # FIT return for PV export

supply_gas:
demand_electricity:

constraints.resource: file=demand_power.csv
demand_heat:

constraints.resource: file=demand_heat.csv
available_area: 1300
coordinates: {x: 8, y: 7}

X3:
techs:

boiler:
costs.monetary.energy_cap: 78 # different boiler costs

pv:
constraints:

(continues on next page)

1.8. More info 69

Calliope Documentation, Release 0.6.0

(continued from previous page)

energy_cap_max: 50 # changing tariff structure below 50kW
costs.monetary:

om_annual: -80.5 # reimbursement per kWp from FIT
supply_gas:
demand_electricity:

constraints.resource: file=demand_power.csv
demand_heat:

constraints.resource: file=demand_heat.csv
available_area: 900
coordinates: {x: 5, y: 3}

other-locs-end
N1-start
N1: # location for branching heat transmission network

coordinates: {x: 5, y: 7}
N1-end

links:
links-start
X1,X2:

techs:
power_lines:

distance: 10
X1,X3:

techs:
power_lines:

X1,N1:
techs:

heat_pipes:
N1,X2:

techs:
heat_pipes:

N1,X3:
techs:

heat_pipes:
links-end

1.8.3 Listing of configuration options

Configuration layout

There must always be at least one model configuration YAML file, probably called model.yaml or similar. This file
can import any number of additional files.

This file or this set of files must specify the following top-level configuration keys:

• name: the name of the model

• model: model settings

• run: run settings

• techs: technology definitions

• (optionally) tech_groups: tech group definitions

• locations: location definitions

• (optionally) links: transmission link definitions

70 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Note: Model settings (model) affect how the model and its data are built by Calliope, while run settings (run)
only take effect once a built model is run (e.g. interactively via model.run()). This means that run settings, unlike
model settings, can be updated after a model is built and before it is run, by modifying attributes in the built model
dataset.

List of model settings

Setting Default Comments
name Model name
calliope_version Calliope framework version this model is intended for
timeseries_data_path Path to time series data
timeseries_dateformat %Y-%m-%d

%H:%M:%S
Timestamp format of all time series data when read from
file

timeseries_data Dict of dataframes with time series data (when passing
in dicts rather than YAML files to Model constructor)

subset_time Subset of timesteps as a two-element list giving the
range, e.g. [‘2005-01-01’, ‘2005-01-05’], or a single
string, e.g. ‘2005-01’

reserve_margin {} Per-carrier system-wide reserve margins
random_seed Seed for random number generator used during cluster-

ing
time {} Optional settings to adjust time resolution, see Time res-

olution adjustment for the available options
group_share {} Optional settings for the group_share constraint

1.8. More info 71

Calliope Documentation, Release 0.6.0

List of run settings

Setting Default Comments
backend pyomo Backend to use to build and solve the model. As of

v0.6.0, only pyomo is available
solver glpk Which solver to use
solver_options A list of options, which are passed on to the chosen

solver, and are therefore solver-dependent
solver_io What method the Pyomo backend should use to com-

municate with the solver
save_logs Directory into which to save logs and temporary files.

Also turns on symbolic solver labels in the Pyomo back-
end

bigM 1000000000.0 Used for unmet demand, but should be of a similar order
of magnitude as the largest cost that the model could
achieve. Too high and the model will not converge

ensure_feasibility False If true, unmet_demand will be a decision variable, to
account for an ability to meet demand with the available
supply. If False and a mismatch occurs, the optimisation
will fail due to infeasibility

operation {} Settings for operational mode
objective cost_minimization Objective function to use. As of v0.6.0, this has no ef-

fect.
mode plan Which mode to run the model in: ‘plan’ or ‘operation’
zero_threshold 1e-10 Any value coming out of the backend that is smaller

than this threshold (due to floating point errors, prob-
ably) will be set to zero

List of possible constraints

The following table lists all available technology constraint settings and their default values. All of these can be set by
tech_identifier.constraints.constraint_name, e.g. nuclear.constraints.e_cap.max.

Setting Default Name Unit Comments
lifetime Technology lifetime years Must be defined if fixed capital costs

are defined. A reasonable value for
many technologies is around 20-25
years.

carrier_ratios {} Carrier ratios fraction Ratio of summed output of carri-
ers in [‘out_2’, ‘out_3’] / [‘in_2’,
‘in_3’] to the summed output of car-
riers in ‘out’ / ‘in’. given in a nested
dictionary.

resource 0 Available resource kWh/m2 |
kW/m2

Maximum available resource (static,
or from file as timeseries). Unit dic-
tated by reosurce_unit

Continued on next page

72 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Table 1 – continued from previous page
Setting Default Name Unit Comments
force_resource False Force resource boolean Forces this technology to use all

available resource, rather than
making it a maximum upper bound-
ary (for production) or minimum
lower boundary (for consumption).
Static boolean, or from file as time-
series

resource_unit power Resource unit N/A Sets the unit of resource to either
power (i.e. kW) or energy (i.e.
kWh), which affects how resource
time series are processed when per-
forming time resolution adjustments

resource_eff 1.0 Resource efficiency fraction Efficiency (static, or from file as
timeseries) in capturing resource be-
fore it reaches storage (if storage is
present) or conversion to carrier.

resource_area_min 0 Minimum installed
collector area

m2

resource_area_max False Maximum installed
collector area

m2 Set to false by default in order to dis-
able this constraint

resource_area_equals False Specific installed col-
lector area

m2

resource_area_per_energy_capFalse Energy capacity per
unit collector ares

boolean If set, forces resource_area
to follow energy_cap with the
given numerical ratio (e.g. setting to
1.5 means that resource_area
== 1.5 * energy_cap)

resource_cap_min 0 Minimum installed
resource consumption
capacity

kW

resource_cap_max inf Maximum installed
resource consumption
capacity

kW

resource_cap_equals False Specific installed
resource consumption
capacity

kW overrides _max and _min con-
straints.

resource_cap_equals_energy_capFalse Resource capacity
equals energy cpacity

boolean If true, resource_cap is forced
to equal energy_cap

resource_min_use False Minimum resource
consumption

fraction Set to a value between 0 and 1 to
force minimum resource consump-
tion for production technologies

resource_scale 1.0 Resource scale fraction Scale resource (either static value or
all valuesin timeseries) by this value

storage_initial 0 Initial storage level kWh Set stored energy in device at the
first timestep

storage_cap_min 0 Minimum storage ca-
pacity

kWh

storage_cap_max inf Maximum storage ca-
pacity

kWh If not defined, energy_cap_max
* charge_rate will be used as
the capacity.

Continued on next page

1.8. More info 73

Calliope Documentation, Release 0.6.0

Table 1 – continued from previous page
Setting Default Name Unit Comments
storage_cap_equals False Specific storage capac-

ity
kWh If not defined,

energy_cap_equals *
charge_rate will be used
as the capacity and overrides _max
and _min constraints.

storage_cap_per_unit False Storage capacity per
purchased unit

kWh/unit Set the storage capacity of each inte-
ger unit of a technology perchased.

charge_rate False Charge rate hour -1 ratio of maximum charge/discharge
(kW) for a given maximum storage
capacity (kWh)

storage_loss 0 Storage loss rate hour -1 rate of storage loss per hour (static,
or from file as timeseries), used to
calculate lost stored energy as (1 -
storage_loss)^hours_per_timestep

energy_prod False Energy production boolean Allow this technology to supply en-
ergy to the carrier (static boolean, or
from file as timeseries).

energy_con False Energy consumption boolean Allow this technology to consume
energy from the carrier (static
boolean, or from file as timeseries).

parasitic_eff 1.0 Plant parasitic effi-
ciency

fraction Additional losses as energy gets
transferred from the plant to the car-
rier (static, or from file as time-
series), e.g. due to plant parasitic
consumption

energy_eff 1.0 Energy efficiency fraction conversion efficiency (static,
or from file as timeseries), from
resource/storage/carrier_in
(tech dependent) to
carrier_out.

energy_eff_per_distance 1.0 Energy efficiency per
distance

distance
-1

Set as value between 1 (no loss) and
0 (all energy lost)

energy_cap_min 0 Minimum installed en-
ergy capacity

kW Limits decision variables
carrier_prod/carrier_con
to a minimum/maximum.

energy_cap_max inf Maximum installed
energy capacity

kW Limits decision variables
carrier_prod/carrier_con
to a maximum/minimum.

energy_cap_equals False Specific installed en-
ergy capacity

kW fixes maximum/minimum
if decision variables
carrier_prod/carrier_con
and overrides _max and _min
constraints.

energy_cap_max_systemwideinf System-wide maxi-
mum installed energy
capacity

kW Limits the sum to a maxi-
mum/minimum, for a particular
technology, of the decision variables
carrier_prod/carrier_con
over all locations.

Continued on next page

74 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Table 1 – continued from previous page
Setting Default Name Unit Comments
energy_cap_equals_systemwideFalse System-wide spe-

cific installed energy
capacity

kW fixes the sum to a maxi-
mum/minimum, for a particular
technology, of the decision variables
carrier_prod/carrier_con
over all locations.

energy_cap_scale 1.0 Energy capacity scale float Scale all energy_cap
min/max/equals/total_max/total_equals
constraints by this value

energy_cap_min_use False Minimum carrier pro-
duction

fraction Set to a value between 0 and 1 to
force minimum carrer production as
a fraction of the technology maxi-
mum energy capacity. If non-zero
and technology is not defined by
units, this will force the technol-
ogy to operate above its minimum
value at every timestep.

energy_cap_per_unit False Energy capacity per
purchased unit

kW/unit Set the capacity of each integer unit
of a technology purchased

energy_ramping False Ramping rate fraction /
hour

Set to false to disable ramping
constraints, otherwise limit maxi-
mum carrier production to a frac-
tion of maximum capacity, which
increases by that fraction at each
timestep.

export_cap inf Export capacity kW Maximum allowed export of pro-
duced energy carrier for a technol-
ogy.

export_carrier Export carrier N/A Name of carrier to be exported.
Must be an output carrier of the
technology

units_min False Minimum number of
purchased units

integer Turns the model from LP to MILP.

units_max False Maximum number of
purchased units

integer Turns the model from LP to MILP.

units_equals False Specific number of
purchased units

integer Turns the model from LP to MILP.

List of possible costs

These are all the available costs, which are set to 0 by default for every defined cost class. Costs are set by
tech_identifier.costs.cost_class.cost_name, e.g. nuclear.costs.monetary.e_cap.

1.8. More info 75

Calliope Documentation, Release 0.6.0

Setting Default Name Unit Comments
interest_rate 0 Interest rate fraction Used when computing levelized

costs
storage_cap 0 Cost of storage capac-

ity
kWh -1

resource_area 0 Cost of resource col-
lector area

m-2

resource_cap 0 Cost of resource con-
sumption capacity

kW -1

energy_cap 0 Cost of energy capac-
ity

kW gross
-1

energy_cap_per_distance 0 Cost of energy capac-
ity, per unit distance

kW
gross

-1 /
distance

Applied to transmission links only

om_annual_investment_fraction0 Fractional yearly
O&M costs

fraction /
total in-
vestment

om_annual 0 Yearly O&M costs kW
energy_cap
-1

om_prod 0 Carrier production cost kWh -1 Applied to carrier production of a
technology

om_con 0 Carrier consumption
cost

kWh -1 Applied to carrier consumption of a
technology

export 0 Carrier export cost kWh -1 Usually used in the negative sense,
as a subsidy.

purchase 0 Purchase cost unit -1 Triggers a binary variable for that
technology to say that it has been
purchased or is applied to integer
variable units

Technology depreciation settings apply when calculating levelized costs. The interest rate and life times must be set
for each technology with investment costs.

List of abstract base technology groups

Technologies must always define a parent, and this can either be one of the pre-defined abstract base technology groups
or a user-defined group (see Using tech_groups to group configuration). The pre-defined groups are:

• supply: Supplies energy to a carrier, has a positive resource.

• supply_plus: Supplies energy to a carrier, has a positive resource. Additional possible constraints, including
efficiencies and storage, distinguish this from supply.

• demand: Demands energy from a carrier, has a negative resource.

• storage: Stores energy.

• transmission: Transmits energy from one location to another.

• conversion: Converts energy from one carrier to another.

• conversion_plus: Converts energy from one or more carrier(s) to one or more different carrier(s).

A technology inherits the configuration that its parent group specifies (which, in turn, may inherit from its own parent).

76 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

Note: The identifiers of the abstract base tech groups are reserved and cannot be used for a user-defined technology
or tech group.

The following lists the pre-defined base tech groups and the defaults they provide.

supply

Default constraints provided by the parent tech group:

costs: {}
constraints:

resource: inf
resource_unit: power
energy_prod: true

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs:
- interest_rate
- resource_area
- energy_cap
- om_annual_investment_fraction
- om_annual
- om_prod
- om_con
- export
- purchase
- depreciation_rate
allowed_constraints:
- energy_prod
- lifetime
- resource
- force_resource
- resource_min_use
- resource_unit
- resource_area_min
- resource_area_max
- resource_area_equals
- resource_area_per_energy_cap
- resource_scale
- energy_eff
- energy_cap_min
- energy_cap_max
- energy_cap_equals
- energy_cap_max_systemwide
- energy_cap_equals_systemwide
- energy_cap_scale
- energy_cap_min_use
- energy_cap_per_unit
- energy_ramping
- energy_eff_per_distance

(continues on next page)

1.8. More info 77

Calliope Documentation, Release 0.6.0

(continued from previous page)

- export_cap
- export_carrier
- units_min
- units_max
- units_equals
required_constraints:
- [energy_cap_max, energy_cap_equals, energy_cap_per_unit]

supply_plus

Default constraints provided by the parent tech group:

costs: {}
constraints:

resource: inf
resource_unit: power
resource_eff: 1.0
energy_prod: true

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs:
- interest_rate
- storage_cap
- resource_area
- resource_cap
- energy_cap
- om_annual_investment_fraction
- om_annual
- om_prod
- om_con
- export
- purchase
- depreciation_rate
allowed_constraints:
- energy_prod
- lifetime
- resource
- force_resource
- resource_min_use
- resource_unit
- resource_eff
- resource_area_min
- resource_area_max
- resource_area_equals
- resource_area_per_energy_cap
- resource_cap_min
- resource_cap_max
- resource_cap_equals
- resource_cap_equals_energy_cap
- resource_scale

(continues on next page)

78 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

- parasitic_eff
- energy_eff
- energy_cap_min
- energy_cap_max
- energy_cap_equals
- energy_cap_max_systemwide
- energy_cap_equals_systemwide
- energy_cap_scale
- energy_cap_min_use
- energy_cap_per_unit
- energy_ramping
- energy_eff_per_distance
- export_cap
- export_carrier
- units_min
- units_max
- units_equals
- storage_initial
- storage_cap_min
- storage_cap_max
- storage_cap_equals
- storage_cap_per_unit
- charge_rate
- storage_time_max
- storage_loss
required_constraints:
- [energy_cap_max, energy_cap_equals, energy_cap_per_unit]

demand

Default constraints provided by the parent tech group:

costs: {}
constraints:

resource_unit: power
force_resource: true
energy_con: true

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs: []
allowed_constraints:
- energy_con
- resource
- force_resource
- resource_unit
- resource_scale
- resource_area_equals
required_constraints:
- resource

1.8. More info 79

Calliope Documentation, Release 0.6.0

storage

Default constraints provided by the parent tech group:

costs: {}
constraints:

energy_prod: true
energy_con: true
storage_cap_max: inf

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs:
- interest_rate
- storage_cap
- energy_cap
- om_annual_investment_fraction
- om_annual
- om_prod
- export
- purchase
- depreciation_rate
allowed_constraints:
- energy_prod
- energy_con
- lifetime
- energy_eff
- energy_cap_min
- energy_cap_max
- energy_cap_equals
- energy_cap_max_systemwide
- energy_cap_equals_systemwide
- energy_cap_scale
- energy_cap_min_use
- energy_cap_per_unit
- energy_ramping
- storage_initial
- storage_cap_min
- storage_cap_max
- storage_cap_equals
- storage_cap_per_unit
- charge_rate
- storage_time_max
- storage_loss
- export_cap
- export_carrier
- units_min
- units_max
- units_equals
required_constraints:
- [energy_cap_max, energy_cap_equals, energy_cap_per_unit]
- [storage_cap_max, storage_cap_equals]

80 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

transmission

Default constraints provided by the parent tech group:

costs: {}
constraints:

energy_prod: true
energy_con: true

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs:
- interest_rate
- energy_cap
- energy_cap_per_distance
- om_annual_investment_fraction
- om_annual
- om_prod
- purchase
- purchase_per_distance
- depreciation_rate
allowed_constraints:
- energy_prod
- energy_con
- lifetime
- energy_con
- energy_prod
- energy_eff_per_distance
- energy_eff
- one_way
- energy_cap_scale
required_constraints:
- [energy_cap_max, energy_cap_equals, energy_cap_per_unit]

conversion

Default constraints provided by the parent tech group:

costs: {}
constraints:

energy_prod: true
energy_con: true

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs:
- interest_rate
- energy_cap

(continues on next page)

1.8. More info 81

Calliope Documentation, Release 0.6.0

(continued from previous page)

- om_annual_investment_fraction
- om_annual
- om_prod
- om_con
- export
- purchase
- depreciation_rate
allowed_constraints:
- energy_prod
- energy_con
- lifetime
- energy_eff
- energy_cap_min
- energy_cap_max
- energy_cap_equals
- energy_cap_max_systemwide
- energy_cap_equals_systemwide
- energy_cap_scale
- energy_cap_min_use
- energy_cap_per_unit
- energy_ramping
- energy_eff_per_distance
- export_cap
- export_carrier
- units_min
- units_max
- units_equals
required_constraints:
- [energy_cap_max, energy_cap_equals, energy_cap_per_unit]

conversion_plus

Default constraints provided by the parent tech group:

costs: {}
constraints:

energy_prod: true
energy_con: true

essentials:
parent:

Required constraints, allowed constraints, and allowed costs:

allowed_costs:
- interest_rate
- energy_cap
- om_annual_investment_fraction
- om_annual
- om_prod
- om_con
- export
- purchase
- depreciation_rate

(continues on next page)

82 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

(continued from previous page)

allowed_constraints:
- energy_prod
- energy_con
- lifetime
- carrier_ratios
- energy_eff
- energy_cap_min
- energy_cap_max
- energy_cap_equals
- energy_cap_max_systemwide
- energy_cap_equals_systemwide
- energy_cap_scale
- energy_cap_min_use
- energy_cap_per_unit
- energy_ramping
- energy_eff_per_distance
- export_cap
- export_carrier
- units_min
- units_max
- units_equals
required_constraints:
- [energy_cap_max, energy_cap_equals, energy_cap_per_unit]

YAML configuration file format

All configuration files (with the exception of time series data files) are in the YAML format, “a human friendly data
serialisation standard for all programming languages”.

Configuration for Calliope is usually specified as option: value entries, where value might be a number, a
text string, or a list (e.g. a list of further settings).

Calliope allows an abbreviated form for long, nested settings:

one:
two:

three: x

can be written as:

one.two.three: x

Calliope also allows a special import: directive in any YAML file. This can specify one or several YAML files
to import. If both the imported file and the current file define the same option, the definition in the current file takes
precedence.

Using quotation marks (' or ") to enclose strings is optional, but can help with readability. The three ways of setting
option to text below are equivalent:

option: "text"
option: 'text'
option: text

Sometimes, a setting can be either enabled or disabled, in this case, the boolean values true or false are used.

Comments can be inserted anywhere in YAML files with the # symbol. The remainder of a line after # is interpreted
as a comment.

1.8. More info 83

Calliope Documentation, Release 0.6.0

See the YAML website for more general information about YAML.

Calliope internally represents the configuration as AttrDicts, which are a subclass of the built-in Python dictionary
data type (dict) with added functionality such as YAML reading/writing and attribute access to keys.

1.8.4 Mathematical formulation

This section details the mathematical formulation of the different components. For each component, a link to the
actual implementing function in the Calliope code is given.

Decision variables

calliope.backend.pyomo.variables.initialize_decision_variables(backend_model)
Defines decision variables.

Variable Dimensions
energy_cap loc_techs
carrier_prod loc_tech_carriers_prod, timesteps
carrier_con loc_tech_carriers_con, timesteps
cost costs, loc_techs_cost
resource_area loc_techs_area,
storage_cap loc_techs_store
storage loc_techs_store, timesteps
resource_con loc_techs_supply_plus, timesteps
resource_cap loc_techs_supply_plus
carrier_export loc_tech_carriers_export, timesteps
cost_var costs, loc_techs_om_cost, timesteps
cost_investment costs, loc_techs_investment_cost
purchased loc_techs_purchase
units loc_techs_milp
operating_units loc_techs_milp, timesteps
unmet_demand loc_carriers, timesteps

Objective functions

calliope.backend.pyomo.objective.cost_minimization(backend_model)
Minimizes total system monetary cost.

𝑚𝑖𝑛 : 𝑧 =
∑︁

𝑙𝑜𝑐::𝑡𝑒𝑐ℎ𝑐𝑜𝑠𝑡

𝑐𝑜𝑠𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦)) +
∑︁

𝑙𝑜𝑐::𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑢𝑛𝑚𝑒𝑡_𝑑𝑒𝑚𝑎𝑛𝑑(𝑙𝑜𝑐 :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑏𝑖𝑔𝑀

calliope.backend.pyomo.objective.check_feasibility(backend_model)
Dummy objective, to check that there are no conflicting constraints.

𝑚𝑖𝑛 : 𝑧 = 1

84 Chapter 1. User guide

http://www.yaml.org/

Calliope Documentation, Release 0.6.0

Constraints

Energy Balance

calliope.backend.pyomo.constraints.energy_balance.system_balance_constraint_rule(backend_model,
loc_carrier,
timestep)

System balance ensures that, within each location, the production and consumption of each carrier is balanced.∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑∈𝑙𝑜𝑐::𝑐𝑎𝑟𝑟𝑖𝑒𝑟

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) +
∑︁

𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛∈𝑙𝑜𝑐::𝑐𝑎𝑟𝑟𝑖𝑒𝑟

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) +
∑︁

𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡∈𝑙𝑜𝑐::𝑐𝑎𝑟𝑟𝑖𝑒𝑟

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∈ 𝑙𝑜𝑐 :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠, ∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.energy_balance.balance_supply_constraint_rule(backend_model,
loc_tech,
timestep)

Limit production from supply techs to their available resource

𝑚𝑖𝑛_𝑢𝑠𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)
≥ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑢𝑝𝑝𝑙𝑦,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

If 𝑓𝑜𝑟𝑐𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) is set:

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)
= 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑢𝑝𝑝𝑙𝑦,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

Where:

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

if 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ is in 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑎𝑟𝑒𝑎:

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

calliope.backend.pyomo.constraints.energy_balance.balance_demand_constraint_rule(backend_model,
loc_tech,
timestep)

Limit consumption from demand techs to their required resource.

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑑𝑒𝑚𝑎𝑛𝑑,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

If 𝑓𝑜𝑟𝑐𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) is set:

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑑𝑒𝑚𝑎𝑛𝑑,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

Where:

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

if 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ is in 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑎𝑟𝑒𝑎:

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

1.8. More info 85

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.energy_balance.resource_availability_supply_plus_constraint_rule(backend_model,
loc_tech,
timestep)

Limit production from supply_plus techs to their available resource.

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑢𝑝𝑝𝑙𝑦+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

If 𝑓𝑜𝑟𝑐𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) is set:

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑢𝑝𝑝𝑙𝑦+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

Where:

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

if 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ is in 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑎𝑟𝑒𝑎:

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

calliope.backend.pyomo.constraints.energy_balance.balance_transmission_constraint_rule(backend_model,
loc_tech,
timestep)

Balance carrier production and consumption of transmission technologies

−1 * 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐𝑓𝑟𝑜𝑚 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐𝑡𝑜 :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐𝑡𝑜 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐𝑓𝑟𝑜𝑚 :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑠 :: 𝑡𝑒𝑐ℎ𝑠 : 𝑙𝑜𝑐𝑠𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

Where a link is the connection between 𝑙𝑜𝑐𝑓𝑟𝑜𝑚 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐𝑡𝑜 and 𝑙𝑜𝑐𝑡𝑜 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐𝑓𝑟𝑜𝑚 for locations to and
from.

calliope.backend.pyomo.constraints.energy_balance.balance_supply_plus_constraint_rule(backend_model,
loc_tech,
timestep)

Balance carrier production and resource consumption of supply_plus technologies alongside any use of resource
storage.

𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)× (1− 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑙𝑜𝑠𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝))𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) + 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)− 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑢𝑝𝑝𝑙𝑦+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

If no storage is defined for the technology, this reduces to:

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) =
𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑢𝑝𝑝𝑙𝑦+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.energy_balance.balance_storage_constraint_rule(backend_model,
loc_tech,
timestep)

Balance carrier production and consumption of storage technologies, alongside any use of the stored volume.

𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)× (1− 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑙𝑜𝑠𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝))𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) − 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)− 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑡𝑜𝑟𝑎𝑔𝑒,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

Capacity

calliope.backend.pyomo.constraints.capacity.storage_capacity_constraint_rule(backend_model,
loc_tech)

Set maximum storage capacity. Supply_plus & storage techs only

86 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

The first valid case is applied:

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≤ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑡𝑜𝑟𝑒

and (if equals not enforced):

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≥ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑡𝑜𝑟𝑒

calliope.backend.pyomo.constraints.capacity.energy_capacity_storage_constraint_rule(backend_model,
loc_tech)

Set an additional energy capacity constraint on storage technologies, based on their use of charge_rate.

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≤ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑎𝑡𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑠𝑡𝑜𝑟𝑒

calliope.backend.pyomo.constraints.capacity.resource_capacity_constraint_rule(backend_model,
loc_tech)

Add upper and lower bounds for resource_cap.

The first valid case is applied:

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑓𝑖𝑛𝑖𝑡𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑢𝑝𝑝𝑙𝑦_𝑝𝑙𝑢𝑠

and (if equals not enforced):

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≥ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝,𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑓𝑖𝑛𝑖𝑡𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑢𝑝𝑝𝑙𝑦_𝑝𝑙𝑢𝑠

calliope.backend.pyomo.constraints.capacity.resource_capacity_equals_energy_capacity_constraint_rule(backend_model,
loc_tech)

Add equality constraint for resource_cap to equal energy_cap, for any technologies which have defined re-
source_cap_equals_energy_cap.

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑓𝑖𝑛𝑖𝑡𝑒_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑢𝑝𝑝𝑙𝑦_𝑝𝑙𝑢𝑠 if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑐𝑎𝑝_𝑒𝑞𝑢𝑎𝑙𝑠_𝑒𝑛𝑒𝑟𝑔𝑦_𝑐𝑎𝑝 = True

calliope.backend.pyomo.constraints.capacity.resource_area_constraint_rule(backend_model,
loc_tech)

Set upper and lower bounds for resource_area.

The first valid case is applied:

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑎𝑟𝑒𝑎

and (if equals not enforced):

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≥ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎,𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑎𝑟𝑒𝑎

calliope.backend.pyomo.constraints.capacity.resource_area_per_energy_capacity_constraint_rule(backend_model,
loc_tech)

Add equality constraint for resource_area to equal a percentage of energy_cap, for any technologies which have
defined resource_area_per_energy_cap

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑎𝑟𝑒𝑎_𝑝𝑒𝑟_𝑒𝑛𝑒𝑟𝑔𝑦_𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐𝑠 :: 𝑡𝑒𝑐ℎ𝑠𝑎𝑟𝑒𝑎 if 𝑎𝑟𝑒𝑎_𝑝𝑒𝑟_𝑒𝑛𝑒𝑟𝑔𝑦_𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

1.8. More info 87

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.capacity.resource_area_capacity_per_loc_constraint_rule(backend_model,
loc)

Set upper bound on use of area for all locations which have available_area constraint set. Does not consider
resource_area applied to demand technologies∑︁

𝑡𝑒𝑐ℎ

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≤ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑎𝑟𝑒𝑎 ∀𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑠 if 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑎𝑟𝑒𝑎(𝑙𝑜𝑐)

calliope.backend.pyomo.constraints.capacity.energy_capacity_constraint_rule(backend_model,
loc_tech)

Set upper and lower bounds for energy_cap.

The first valid case is applied:

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠

and (if equals not enforced):

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≥ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠

calliope.backend.pyomo.constraints.capacity.energy_capacity_systemwide_constraint_rule(backend_model,
tech)

Set constraints to limit the capacity of a single technology type across all locations in the model.

The first valid case is applied:

∑︁
𝑙𝑜𝑐

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠,𝑠𝑦𝑠𝑡𝑒𝑚𝑤𝑖𝑑𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠,𝑠𝑦𝑠𝑡𝑒𝑚𝑤𝑖𝑑𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑎𝑥,𝑠𝑦𝑠𝑡𝑒𝑚𝑤𝑖𝑑𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑎𝑥,𝑠𝑦𝑠𝑡𝑒𝑚𝑤𝑖𝑑𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑡𝑒𝑐ℎ ∈ 𝑡𝑒𝑐ℎ𝑠

Dispatch

calliope.backend.pyomo.constraints.dispatch.carrier_production_max_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set maximum carrier production. All technologies.

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐_𝑒𝑓𝑓(𝑙𝑜𝑐 :: 𝑡𝑒𝑐)

calliope.backend.pyomo.constraints.dispatch.carrier_production_min_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set minimum carrier production. All technologies except conversion_plus.

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑖𝑛_𝑢𝑠𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐)

calliope.backend.pyomo.constraints.dispatch.carrier_consumption_max_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set maximum carrier consumption for demand, storage, and transmission techs.

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ −1× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

88 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.dispatch.resource_max_constraint_rule(backend_model,
loc_tech,
timestep)

Set maximum resource consumed by supply_plus techs.

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

calliope.backend.pyomo.constraints.dispatch.storage_max_constraint_rule(backend_model,
loc_tech,
timestep)

Set maximum stored energy. Supply_plus & storage techs only.

𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

calliope.backend.pyomo.constraints.dispatch.ramping_up_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Ramping up constraint.

𝑑𝑖𝑓𝑓(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑚𝑎𝑥_𝑟𝑎𝑚𝑝𝑖𝑛𝑔_𝑟𝑎𝑡𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

calliope.backend.pyomo.constraints.dispatch.ramping_down_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Ramping down constraint.

−1×𝑚𝑎𝑥_𝑟𝑎𝑚𝑝𝑖𝑛𝑔_𝑟𝑎𝑡𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑑𝑖𝑓𝑓(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

calliope.backend.pyomo.constraints.dispatch.ramping_constraint(backend_model,
loc_tech_carrier,
timestep, direc-
tion=0)

Ramping rate constraints.

Direction: 0 is up, 1 is down.

𝑚𝑎𝑥_𝑟𝑎𝑚𝑝𝑖𝑛𝑔_𝑟𝑎𝑡𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑒𝑛𝑒𝑟𝑔𝑦𝑟𝑎𝑚𝑝𝑖𝑛𝑔(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑑𝑖𝑓𝑓(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = (𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) + 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝))/𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)− (𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝− 1) + 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝− 1))/𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝− 1)

Costs

calliope.backend.pyomo.constraints.costs.cost_constraint_rule(backend_model,
cost, loc_tech)

Combine investment and time varying costs into one cost per technology

𝑐𝑜𝑠𝑡(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑐𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) +
∑︁

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝∈𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

𝑐𝑜𝑠𝑡𝑣𝑎𝑟(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

calliope.backend.pyomo.constraints.costs.cost_investment_constraint_rule(backend_model,
cost,
loc_tech)

Calculate costs from capacity decision variables.

1.8. More info 89

Calliope Documentation, Release 0.6.0

Transmission technologies “exist” at two locations, so their cost is divided by 2.

𝑐𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑐𝑜𝑠𝑡𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑜𝑚(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) + 𝑐𝑜𝑠𝑡𝑓𝑖𝑥𝑒𝑑_𝑜𝑚(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) + 𝑐𝑜𝑠𝑡𝑐𝑜𝑛(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑐𝑜𝑠𝑡𝑐𝑜𝑛(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 * 𝑡𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 * (𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦_𝑐𝑎𝑝(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) + 𝑐𝑜𝑠𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑐𝑎𝑝(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) + 𝑐𝑜𝑠𝑡𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑐𝑎𝑝(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) + 𝑐𝑜𝑠𝑡𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑎𝑟𝑒𝑎(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ))× 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑎𝑟𝑒𝑎(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =

{︃
= 1/𝑝𝑙𝑎𝑛𝑡_𝑙𝑖𝑓𝑒, if 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑒 = 0

= 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑒×(1+𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑒)𝑝𝑙𝑎𝑛𝑡_𝑙𝑖𝑓𝑒

(1+𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑒)𝑝𝑙𝑎𝑛𝑡_𝑙𝑖𝑓𝑒−1
, if 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑟𝑎𝑡𝑒0

𝑡𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 =
∑︁

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝∈𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

(𝑡𝑖𝑚𝑒_𝑟𝑒𝑠(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝))× 1

8760

calliope.backend.pyomo.constraints.costs.cost_var_constraint_rule(backend_model,
cost,
loc_tech,
timestep)

Calculate costs from time-varying decision variables

𝑐𝑜𝑠𝑡𝑣𝑎𝑟(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑜𝑠𝑡𝑝𝑟𝑜𝑑(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) + 𝑐𝑜𝑠𝑡𝑐𝑜𝑛(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑐𝑜𝑠𝑡𝑝𝑟𝑜𝑑(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑜𝑠𝑡𝑜𝑚_𝑝𝑟𝑜𝑑(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑝𝑟𝑜𝑑_𝑐𝑜𝑛_𝑒𝑓𝑓 =

{︃
= 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝), if 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐_𝑡𝑒𝑐ℎ𝑠_𝑠𝑢𝑝𝑝𝑙𝑦_𝑝𝑙𝑢𝑠
=

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)
𝑒𝑛𝑒𝑟𝑔𝑦𝑒𝑓𝑓(𝑙𝑜𝑐::𝑡𝑒𝑐ℎ,𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) , if 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐_𝑡𝑒𝑐ℎ𝑠_𝑠𝑢𝑝𝑝𝑙𝑦

𝑐𝑜𝑠𝑡𝑐𝑜𝑛(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑜𝑠𝑡𝑜𝑚_𝑐𝑜𝑛(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑝𝑟𝑜𝑑_𝑐𝑜𝑛_𝑒𝑓𝑓

Export

calliope.backend.pyomo.constraints.export.update_system_balance_constraint(backend_model,
loc_carrier,
timestep)

Update system balance constraint (from energy_balance.py) to include export

Math given in system_balance_constraint_rule()

calliope.backend.pyomo.constraints.export.export_balance_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Ensure no technology can ‘pass’ its export capability to another technology with the same carrier_out, by limit-
ing its export to the capacity of its production

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∈ 𝑙𝑜𝑐𝑠 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑒𝑥𝑝𝑜𝑟𝑡,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.export.update_costs_var_constraint(backend_model,
cost,
loc_tech,
timestep)

Update time varying cost constraint (from costs.py) to include export

𝑐𝑜𝑠𝑡𝑣𝑎𝑟(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)+ = 𝑐𝑜𝑠𝑡𝑒𝑥𝑝𝑜𝑟𝑡(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) * 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡 ∀𝑐𝑜𝑠𝑡 ∈ 𝑐𝑜𝑠𝑡𝑠,∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑠𝑡𝑣𝑎𝑟,𝑒𝑥𝑝𝑜𝑟𝑡,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.export.export_max_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set maximum export. All exporting technologies.

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑥𝑝𝑜𝑟𝑡𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 ∈ 𝑙𝑜𝑐𝑠 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑒𝑥𝑝𝑜𝑟𝑡,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

90 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

If the technology is defined by integer units, not a continuous capacity, this constraint becomes:

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑒𝑥𝑝𝑜𝑟𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑥𝑝𝑜𝑟𝑡𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

MILP

calliope.backend.pyomo.constraints.milp.unit_commitment_constraint_rule(backend_model,
loc_tech,
timestep)

Constraining the number of integer units 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) of a technology which can operate
in a given timestep, based on maximum purchased units 𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐𝑡𝑒𝑐ℎ)

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.milp.unit_capacity_constraint_rule(backend_model,
loc_tech)

Add upper and lower bounds for purchased units of a technology

𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑢𝑛𝑖𝑡𝑠𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑢𝑛𝑖𝑡𝑠𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≤ 𝑢𝑛𝑖𝑡𝑠𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑢𝑛𝑖𝑡𝑠𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝

and (if equals not enforced):

𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≥ 𝑢𝑛𝑖𝑡𝑠𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝

calliope.backend.pyomo.constraints.milp.carrier_production_max_milp_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set maximum carrier production of MILP techs that aren’t conversion plus

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

𝜂𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 is only activated for supply_plus technologies

calliope.backend.pyomo.constraints.milp.carrier_production_max_conversion_plus_milp_constraint_rule(backend_model,
loc_tech,
timestep)

Set maximum carrier production of conversion_plus MILP techs∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑜𝑢𝑡

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.milp.carrier_production_min_milp_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set minimum carrier production of MILP techs that aren’t conversion plus

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑖𝑛𝑢𝑠𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.milp.carrier_production_min_conversion_plus_milp_constraint_rule(backend_model,
loc_tech,
timestep)

Set minimum carrier production of conversion_plus MILP techs∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑜𝑢𝑡

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑖𝑛𝑢𝑠𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

1.8. More info 91

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.milp.carrier_consumption_max_milp_constraint_rule(backend_model,
loc_tech_carrier,
timestep)

Set maximum carrier consumption of demand, storage, and transmission MILP techs

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≥ −1 * 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,𝑐𝑜𝑛,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.milp.energy_capacity_units_constraint_rule(backend_model,
loc_tech)

Set energy capacity decision variable as a function of purchased units

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝

calliope.backend.pyomo.constraints.milp.storage_capacity_units_constraint_rule(backend_model,
loc_tech)

Set storage capacity decision variable as a function of purchased units

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑝𝑒𝑟𝑢𝑛𝑖𝑡(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑚𝑖𝑙𝑝,𝑠𝑡𝑜𝑟𝑒

calliope.backend.pyomo.constraints.milp.energy_capacity_max_purchase_constraint_rule(backend_model,
loc_tech)

Set maximum energy capacity decision variable upper bound as a function of binary purchase variable

The first valid case is applied:

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ), if 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

calliope.backend.pyomo.constraints.milp.energy_capacity_min_purchase_constraint_rule(backend_model,
loc_tech)

Set minimum energy capacity decision variable upper bound as a function of binary purchase variable

and (if equals not enforced):

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑠𝑐𝑎𝑙𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)
≥ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠

calliope.backend.pyomo.constraints.milp.storage_capacity_max_purchase_constraint_rule(backend_model,
loc_tech)

Set maximum storage capacity.

The first valid case is applied:

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

⎧⎪⎨⎪⎩
= 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑, if 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑒𝑞𝑢𝑎𝑙𝑠
≤ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑, if 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

unconstrained, otherwise
∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒,𝑠𝑡𝑜𝑟𝑒

calliope.backend.pyomo.constraints.milp.storage_capacity_min_purchase_constraint_rule(backend_model,
loc_tech)

Set minimum storage capacity decision variable as a function of binary purchase variable

if equals not enforced for storage_cap:

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ≥ 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐𝑎𝑝,𝑚𝑖𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒,𝑠𝑡𝑜𝑟𝑒

92 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.milp.update_costs_investment_units_constraint(backend_model,
cost,
loc_tech)

Add MILP investment costs (cost * number of units purchased)

𝑐𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)+ = 𝑢𝑛𝑖𝑡𝑠(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑐𝑜𝑠𝑡𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) * 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡 * 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ∀𝑐𝑜𝑠𝑡 ∈ 𝑐𝑜𝑠𝑡𝑠,∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡,𝑚𝑖𝑙𝑝

calliope.backend.pyomo.constraints.milp.update_costs_investment_purchase_constraint(backend_model,
cost,
loc_tech)

Add binary investment costs (cost * binary_purchased_unit)

𝑐𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)+ = 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑐𝑜𝑠𝑡𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝑐𝑜𝑠𝑡, 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) * 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡 * 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ∀𝑐𝑜𝑠𝑡 ∈ 𝑐𝑜𝑠𝑡𝑠,∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑠𝑡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒

Conversion

calliope.backend.pyomo.constraints.conversion.balance_conversion_constraint_rule(backend_model,
loc_tech,
timestep)

Balance energy carrier consumption and production

−1 * 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐𝑠 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.conversion.cost_var_conversion_constraint_rule(backend_model,
cost,
loc_tech,
timestep)

Add time-varying conversion technology costs

𝑐𝑜𝑠𝑡𝑣𝑎𝑟(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑐𝑜𝑠𝑡𝑜𝑚,𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) + 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑐𝑜𝑠𝑡𝑜𝑚,𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑠𝑡𝑣𝑎𝑟,𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

Conversion_plus

calliope.backend.pyomo.constraints.conversion_plus.balance_conversion_plus_primary_constraint_rule(backend_model,
loc_tech,
timestep)

Balance energy carrier consumption and production for carrier_in and carrier_out∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑜𝑢𝑡

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟_𝑟𝑎𝑡𝑖𝑜(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, ‘𝑜𝑢𝑡′)
= −1 *

∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑖𝑛

(𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) * 𝑐𝑎𝑟𝑟𝑖𝑒𝑟_𝑟𝑎𝑡𝑖𝑜(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, ‘𝑖𝑛′) * 𝜂𝑒𝑛𝑒𝑟𝑔𝑦(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.conversion_plus.carrier_production_max_conversion_plus_constraint_rule(backend_model,
loc_tech,
timestep)

Set maximum conversion_plus carrier production.∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑜𝑢𝑡

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

calliope.backend.pyomo.constraints.conversion_plus.carrier_production_min_conversion_plus_constraint_rule(backend_model,
loc_tech,
timestep)

Set minimum conversion_plus carrier production.∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑜𝑢𝑡

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝,𝑚𝑖𝑛𝑢𝑠𝑒(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

1.8. More info 93

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.conversion_plus.cost_var_conversion_plus_constraint_rule(backend_model,
cost,
loc_tech,
timestep)

Add time-varying conversion_plus technology costs

𝑐𝑜𝑠𝑡𝑣𝑎𝑟(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑐𝑜𝑠𝑡𝑜𝑚,𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) + 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑤𝑒𝑖𝑔ℎ𝑡(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)× 𝑐𝑜𝑠𝑡𝑜𝑚,𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ, 𝑐𝑜𝑠𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) ∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑠𝑡𝑣𝑎𝑟,𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+

calliope.backend.pyomo.constraints.conversion_plus.balance_conversion_plus_tiers_constraint_rule(backend_model,
tier,
loc_tech,
timestep)

Force all carrier_in_2/carrier_in_3 and carrier_out_2/carrier_out_3 to follow carrier_in and carrier_out (respec-
tively).

If tier in [‘out_2’, ‘out_3’]:∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑜𝑢𝑡

(
𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟_𝑟𝑎𝑡𝑖𝑜(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, ‘𝑜𝑢𝑡′)
=

∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑡𝑖𝑒𝑟

(
𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟_𝑟𝑎𝑡𝑖𝑜(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑒𝑟)
∀ tier ∈ [‘𝑜𝑢𝑡′2, ‘𝑜𝑢𝑡

′
3],∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

If tier in [‘in_2’, ‘in_3’]:∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑖𝑛

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟_𝑟𝑎𝑡𝑖𝑜(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, ‘𝑖𝑛′)
=

∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠𝑡𝑖𝑒𝑟

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟_𝑟𝑎𝑡𝑖𝑜(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑒𝑟)
∀ tier ∈ [‘𝑖𝑛′

2, ‘𝑖𝑛
′
3],∀𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ ∈ 𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ𝑠𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛+ ,∀𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

Network

calliope.backend.pyomo.constraints.network.symmetric_transmission_constraint_rule(backend_model,
loc_tech)

Constrain e_cap symmetrically for transmission nodes. Transmission techs only.

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐1 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐2) = 𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐2 :: 𝑡𝑒𝑐ℎ : 𝑙𝑜𝑐1)

Policy

calliope.backend.pyomo.constraints.policy.group_share_energy_cap_constraint_rule(backend_model,
tech-
list,
what)

Enforce shares in energy_cap for groups of technologies. Applied to supply and supply_plus technologies
only. ∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ∈𝑔𝑖𝑣𝑒𝑛_𝑔𝑟𝑜𝑢𝑝

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ) = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×
∑︁

𝑙𝑜𝑐::𝑡𝑒𝑐ℎ∈𝑙𝑜𝑐_𝑡𝑒𝑐ℎ𝑠_𝑠𝑢𝑝𝑝𝑙𝑦𝑙𝑜𝑐_𝑡𝑒𝑐ℎ𝑠_𝑠𝑢𝑝𝑝𝑙𝑦_𝑝𝑙𝑢𝑠

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ)

calliope.backend.pyomo.constraints.policy.group_share_carrier_prod_constraint_rule(backend_model,
tech-
list_carrier,
what)

Enforce shares in carrier_prod for groups of technologies. Applied to loc_tech_carriers_supply_all,
which includes supply, supply_plus, conversion, and conversion_plus.∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑔𝑖𝑣𝑒𝑛_𝑔𝑟𝑜𝑢𝑝,𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝∈𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝) = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×
∑︁

𝑙𝑜𝑐::𝑡𝑒𝑐ℎ:𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐_𝑡𝑒𝑐ℎ_𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠_𝑠𝑢𝑝𝑝𝑙𝑦_𝑎𝑙𝑙,𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝∈𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑝𝑟𝑜𝑑(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝)

94 Chapter 1. User guide

Calliope Documentation, Release 0.6.0

calliope.backend.pyomo.constraints.policy.reserve_margin_constraint_rule(backend_model,
car-
rier)

Enforces a system reserve margin per carrier.∑︁
𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐_𝑡𝑒𝑐ℎ_𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠_𝑠𝑢𝑝𝑝𝑙𝑦_𝑎𝑙𝑙

𝑒𝑛𝑒𝑟𝑔𝑦𝑐𝑎𝑝(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑚𝑎𝑥_𝑑𝑒𝑚𝑎𝑛𝑑) ≥
∑︁

𝑙𝑜𝑐::𝑡𝑒𝑐ℎ::𝑐𝑎𝑟𝑟𝑖𝑒𝑟∈𝑙𝑜𝑐_𝑡𝑒𝑐ℎ_𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠_𝑑𝑒𝑚𝑎𝑛𝑑

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑐𝑜𝑛(𝑙𝑜𝑐 :: 𝑡𝑒𝑐ℎ :: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑚𝑎𝑥_𝑑𝑒𝑚𝑎𝑛𝑑)×−1× 1

𝑡𝑖𝑚𝑒_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑚𝑎𝑥_𝑑𝑒𝑚𝑎𝑛𝑑
× (1 + 𝑟𝑒𝑠𝑒𝑟𝑣𝑒_𝑚𝑎𝑟𝑔𝑖𝑛)

1.9 Development guide

The code lives on GitHub at calliope-project/calliope.

Development takes place in the master branch. Stable versions are tagged off of master with semantic versioning.

Tests are included and can be run with py.test from the project’s root directory.

See our contributors guide on GitHub.

Also see the list of open issues, planned milestones and projects for an overview of where development is heading,
and join us on Gitter to ask questions or discuss code.

1.9.1 Installing a development version

As when installing a stable version, using conda is recommended.

If you only want to track the latest commit, without having a local Calliope repository, then just download the base.yml
and latest.yml requirements files and run (assuming both are saved into a directory called requirements):

$ conda env create -n calliope_latest --file=requirements/base.yml --
→˓file=requirements/latest.yml

This will create a conda environment called calliope_latest.

To actively contribute to Calliope development, you’ll instead want to clone the repository, giving you an editable
copy. This will provide you with the master branch in a known location on your local device.

First, clone the repository:

$ git clone https://github.com/calliope-project/calliope

Using Anaconda/conda, install all requirements, including the free and open source GLPK solver, into a new environ-
ment, e.g. calliope_dev:

$ conda env create -f ./calliope/requirements/base.yml -n calliope_dev
$ source activate calliope_dev

On Windows:

$ conda env create -f ./calliope/requirements/base.yml -n calliope_dev
$ activate calliope_dev

Then install Calliope itself with pip:

$ pip install -e ./calliope

1.9. Development guide 95

https://github.com/calliope-project/calliope
http://semver.org/
https://github.com/calliope-project/calliope/blob/master/CONTRIBUTING.md
https://github.com/calliope-project/calliope/issues
https://github.com/calliope-project/calliope/milestones
https://github.com/calliope-project/calliope/projects
https://gitter.im/calliope-project/calliope
https://raw.githubusercontent.com/calliope-project/calliope/master/requirements/base.yml
https://raw.githubusercontent.com/calliope-project/calliope/master/requirements/latest.yml

Calliope Documentation, Release 0.6.0

1.9.2 Creating modular extensions

As of version 0.6.0, dynamic loading of custom constraint generator extensions has been removed due it not not being
used by users of Calliope. The ability to dynamically load custom functions to adjust time resolution remains (see
below).

Time functions and masks

Custom functions that adjust time resolution can be loaded dynamically during model initialisation. By default, Cal-
liope first checks whether the name of a function or time mask refers to a function from the calliope.core.
time.masks or calliope.core.time.funcs module, and if not, attempts to load the function from an im-
portable module:

time:
masks:

- {function: week, options: {day_func: 'extreme', tech: 'wind', how: 'min'}}
- {function: my_custom_module.my_custom_mask, options: {...}}

function: my_custom_module.my_custom_function
function_options: {...}

1.9.3 Profiling

To profile a Calliope run with the built-in national-scale example model, then visualise the results with snakeviz:

make profile # will dump profile output in the current directory
snakeviz calliope.profile # launch snakeviz to visually examine profile

Use mprof plot to plot memory use.

Other options for visualising:

• Interactive visualisation with KCachegrind (on macOS, use QCachegrind, installed e.g. with brew install
qcachegrind)

pyprof2calltree -i calliope.profile -o calliope.calltree
kcachegrind calliope.calltree

• Generate a call graph from the call tree via graphviz

brew install gprof2dot
gprof2dot -f callgrind calliope.calltree | dot -Tsvg -o callgraph.svg

1.9.4 Checklist for new release

Pre-release

• Make sure all unit tests pass

• Build up-to-date Plotly plots for the documentation with (make doc-plots)

• Re-run tutorial Jupyter notebooks, found in doc/_static/notebooks

• Make sure documentation builds without errors

96 Chapter 1. User guide

https://kcachegrind.github.io/

Calliope Documentation, Release 0.6.0

• Make sure the release notes are up-to-date, especially that new features and backward incompatible changes are
clearly marked

Create release

• Change _version.py version number

• Update changelog with final version number and release date

• Commit with message “Release vXXXX”, then add a “vXXXX” tag, push both to GitHub

• Create a release through the GitHub web interface, using the same tag, titling it “Release vXXXX” (required
for Zenodo to pull it in)

• Upload new release to PyPI: make all-dist

• Update the conda-forge package:

– Fork conda-forge/calliope-feedstock, and update recipe/meta.yaml with:

* Version number: {% set version = "XXXX" %}

* MD5 of latest version from PyPI: {% set md5 = "XXXX" %}

* Reset build: number: 0 if it is not already at zero

* If necessary, carry over any changed requirements from requirements.yml or setup.py

– Submit a pull request from an appropriately named branch in your fork (e.g. vXXXX) to the conda-
forge/calliope-feedstock repository

Post-release

• Update changelog, adding a new vXXXX-dev heading, and update _version.py accordingly, in preparation
for the next master commit

Note: Adding ‘-dev’ to the version string, such as __version__ = '0.1.0-dev', is required for the custom
code in doc/conf.py to work when building in-development versions of the documentation.

1.9. Development guide 97

https://github.com/conda-forge/calliope-feedstock
https://github.com/conda-forge/calliope-feedstock
https://github.com/conda-forge/calliope-feedstock

Calliope Documentation, Release 0.6.0

98 Chapter 1. User guide

CHAPTER 2

API documentation

Documents functions, classes and methods:

2.1 API Documentation

2.1.1 Model class

class calliope.Model(config, model_data=None, *args, **kwargs)
A Calliope Model.

save_debug_data(path)
Save fully built and commented model_run to a YAML file at the given path, for debug purposes.

run(force_rerun=False, **kwargs)
Run the model. If force_rerun is True, any existing results will be overwritten.

Additional kwargs are passed to the backend.

get_formatted_array(var)
Return an xr.DataArray with locs, techs, and carriers as separate dimensions.

Parameters

var [str] Decision variable for which to return a DataArray.

to_netcdf(path)
Save complete model data (inputs and, if available, results) to a NetCDF file at the given path.

to_csv(path, dropna=True)
Save complete model data (inputs and, if available, results) as a set of CSV files to the given path.

Parameters

dropna [bool, optional] If True (default), NaN values are dropped when saving, resulting in
significantly smaller CSV files.

99

Calliope Documentation, Release 0.6.0

2.1.2 Time series

calliope.core.time.clustering.get_clusters(data, func, timesteps_per_day, tech=None,
timesteps=None, k=None, variables=None,
**kwargs)

Run a clustering algorithm on the timeseries data supplied. All timeseries data is reshaped into one row per day
before clustering into similar days.

Parameters

data [xarray.Dataset] Should be normalized

func [str] ‘kmeans’ or ‘hierarchical’ for KMeans or Agglomerative clustering, respectively

timesteps_per_day [int] Total number of timesteps in a day

tech [list, optional] list of strings referring to technologies by which clustering is undertaken. If
none (default), all technologies within timeseries variables will be used.

timesteps [list or str, optional] Subset of the time domain within which to apply clustering.

k [int, optional] Number of clusters to create. If none (default), will use Hartigan’s rule to infer
a reasonable number of clusters.

variables [list, optional] data variables (e.g. resource, energy_eff) by whose values the data
will be clustered. If none (default), all timeseries variables will be used.

kwargs [dict] Additional keyword arguments available depend on the func. For avail-
able KMeans kwargs see: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.
KMeans.html For available hierarchical kwargs see: http://scikit-learn.org/stable/modules/
generated/sklearn.cluster.AgglomerativeClustering.html

Returns

——-

clusters [dataframe] Indexed by timesteps and with locations as columns, giving cluster mem-
bership for first timestep of each day.

clustered_data [sklearn.cluster object] Result of clustering using sklearn.KMeans(k).fit(X) or
sklearn.KMeans(k).AgglomerativeClustering(X). Allows user to access specific attributes,
for detailed statistical analysis.

calliope.core.time.masks.extreme(data, tech, var=’resource’, how=’max’, length=’1D’, n=1,
groupby_length=None, padding=None, normalize=True,
**kwargs)

Returns timesteps for period of length where var for the technology tech across the given list of
locations is either minimal or maximal.

Parameters

data [xarray.Dataset]

tech [str] Technology whose var to find extreme for.

var [str, optional] default ‘resource’

how [str, optional] ‘max’ (default) or ‘min’.

length [str, optional] Defaults to ‘1D’.

n [int, optional] Number of periods of length to look for, default is 1.

groupby_length [str, optional] Group time series and return n periods of length for each group.

100 Chapter 2. API documentation

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

Calliope Documentation, Release 0.6.0

padding [str, optional] Either Pandas frequency (e.g. ‘1D’) or ‘calendar_week’. If Pandas fre-
quency, symmetric padding is undertaken, either side of length If ‘calendar_week’, padding
is fit to the calendar week in which the extreme day(s) are found.

normalize [bool, optional] If True (default), data is normalized using normalized_copy().

kwargs [dict, optional] Dimensions of the selected var over which to index. Any remaining
dimensions will be flattened by mean

calliope.core.time.masks.extreme_diff(data, tech0, tech1, var=’resource’, how=’max’,
length=’1D’, n=1, groupby_length=None,
padding=None, normalize=True, **kwargs)

Returns timesteps for period of length where the diffence in extreme value for var between technologies
tech0 and tech1 is either a minimum or a maximum.

Parameters

data [xarray.Dataset]

tech0 [str] First technology for which we find the extreme of var

tech1 [str] Second technology for which we find the extreme of var

var [str, optional] default ‘resource’

how [str, optional] ‘max’ (default) or ‘min’.

length [str, optional] Defaults to ‘1D’.

n [int, optional] Number of periods of length to look for, default is 1.

groupby_length [str, optional] Group time series and return n periods of length for each group.

padding [str, optional] Either Pandas frequency (e.g. ‘1D’) or ‘calendar_week’. If Pandas fre-
quency, symmetric padding is undertaken, either side of length If ‘calendar_week’, padding
is fit to the calendar week in which the extreme day(s) are found.

normalize [bool, optional] If True (default), data is normalized using normalized_copy().

kwargs [dict, optional] Dimensions of the selected var over which to index. Any remaining
dimensions will be flattened by mean

calliope.core.time.funcs.resample(data, timesteps, resolution)
Function to resample timeseries data from the input resolution (e.g. 1H), to the given resolution (e.g. 2H)

Parameters

data [xarray.Dataset] calliope model data, containing only timeseries data variables

timesteps [str or list; optional] If given, apply resampling to a subset of the timeseries data

resolution [str] time resolution of the output data, given in Pandas time frequency format. E.g.
1H = 1 hour, 1W = 1 week, 1M = 1 month, 1T = 1 minute. Multiples allowed.

2.1.3 Analyzing models

class calliope.analysis.plotting.plotting.ModelPlotMethods(model)

timeseries(**kwargs)

Parameters

2.1. API Documentation 101

Calliope Documentation, Release 0.6.0

array [str or list; default = ‘all’] options: ‘all’, ‘results’, ‘inputs’, the name/list of any energy
carrier(s) (e.g. ‘power’), the name/list of any input/output DataArray(s).

User can specify ‘all’ for all input/results timeseries plots, ‘inputs’ for just input timeseries,
‘results’ for just results timeseries, or the name of any data array to plot (in either inputs
or results). In all but the last case, arrays can be picked from dropdown in visualisation.
In the last case, output can be saved to SVG and a rangeslider can be used.

timesteps_zoom [int, optional] Number of timesteps to show initially on the x-axis (if not
given, the full time range is shown by default).

subset [dict, optional] Dictionary by which data is subset (uses xarray loc indexing). Keys
any of [‘timeseries’, ‘locs’, ‘techs’, ‘carriers’, ‘costs’].

sum_dims [str, optional] List of dimension names to sum plot variable over.

squeeze [bool, optional] Whether to squeeze out dimensions of length = 1.

html_only [bool, optional; default = False] Returns a html string for embedding the plot in
a webpage

to_file [False or str, optional; default = False] Will save plot to file with the given name and
extension. to_file=’plot.svg’ to save to SVG, to_file=’plot.png’ for a static PNG image.
Allowed file extensions are: [‘png’, ‘jpeg’, ‘svg’, ‘webp’].

capacity(**kwargs)

Parameters

array [str or list; default = ‘all’] options: ‘all’, ‘results’, ‘inputs’, the name/list of any energy
capacity DataArray(s) from inputs/results. User can specify ‘all’ for all input/results ca-
pacities, ‘inputs’ for just input capacities, ‘results’ for just results capacities, or the name(s)
of any data array(s) to plot (in either inputs or results). In all but the last case, arrays can
be picked from dropdown in visualisation. In the last case, output can be saved to SVG.

orient [str, optional] ‘h’ for horizontal or ‘v’ for vertical barchart

subset [dict, optional] Dictionary by which data is selected (using xarray indexing loc[]).
Keys any of [‘timeseries’, ‘locs’, ‘techs’, ‘carriers’, ‘costs’]).

sum_dims [str, optional] List of dimension names to sum plot variable over.

squeeze [bool, optional] Whether to squeeze out dimensions containing only single values.

html_only [bool, optional; default = False] Returns a html string for embedding the plot in
a webpage

to_file [False or str, optional; default = False] Will save plot to file with the given name and
extension. to_file=’plot.svg’ to save to SVG, to_file=’plot.png’ for a static PNG image.
Allowed file extensions are: [‘png’, ‘jpeg’, ‘svg’, ‘webp’].

transmission(**kwargs)

Parameters

mapbox_access_token [str, optional] If given and a valid Mapbox API key, a Mapbox map
is drawn for lat-lon coordinates, else (by default), a more simple built-in map.

html_only [bool, optional; default = False] Returns a html string for embedding the plot in
a webpage

to_file [False or str, optional; default = False] Will save plot to file with the given name and
extension. to_file=’plot.svg’ to save to SVG, to_file=’plot.png’ for a static PNG image.
Allowed file extensions are: [‘png’, ‘jpeg’, ‘svg’, ‘webp’].

102 Chapter 2. API documentation

Calliope Documentation, Release 0.6.0

summary(**kwargs)
Plot a summary containing timeseries, installed capacities, and transmission plots. Returns a HTML string
by default, returns None if to_file given (and saves the HTML string to file).

Parameters

to_file [str, optional] Path to output file to save HTML to.

mapbox_access_token [str, optional] (passed to plot_transmission) If given and a valid
Mapbox API key, a Mapbox map is drawn for lat-lon coordinates, else (by default), a
more simple built-in map.

2.1.4 Pyomo backend interface

class calliope.backend.pyomo.interface.BackendInterfaceMethods(model)

access_model_inputs()
If the user wishes to inspect the parameter values used as inputs in the backend model, they can access
a new Dataset of all the backend model inputs, including defaults applied where the user did not specify
anything for a loc::tech

update_param(*args, **kwargs)
A Pyomo Param value can be updated without the user directly accessing the backend model.

Parameters

param [str] Name of the parameter to update

index [tuple of strings] Tuple of dimension indeces, in the order given in model.inputs for
the reciprocal parameter

value [int, float, bool, or str] Value to assign to the Pyomo Param at the given index

Returns

Value will be updated in-place, requiring the user to run the model again to

see the effect on results.

activate_constraint(*args, **kwargs)
Takes a constraint or objective name, finds it in the backend model and sets its status to either active or
deactive.

Parameters

constraint [str] Name of the constraint/objective to activate/deactivate Built-in constraints
include ‘_constraint’

active: bool, default=True status to set the constraint/objective

rerun(*args, **kwargs)
Rerun the Pyomo backend, perhaps after updating a parameter value, (de)activating a constraint/objective
or updating run options in the model model_data object (e.g. run.solver).

Returns

run_data [xarray.Dataset] Raw data from this rerun, including both inputs and results. to
filter inputs/results, use run_data.filter_by_attrs(is_result=. . .) with 0 for inputs and 1 for
results.

2.1. API Documentation 103

Calliope Documentation, Release 0.6.0

2.1.5 Utility classes: AttrDict, Exceptions, Logging

class calliope.core.attrdict.AttrDict(source_dict=None)
A subclass of dict with key access by attributes:

d = AttrDict({'a': 1, 'b': 2})
d.a == 1 # True

Includes a range of additional methods to read and write to YAML, and to deal with nested keys.

copy(deep=False)
Override copy method so that it returns an AttrDict

init_from_dict(d)
Initialize a new AttrDict from the given dict. Handles any nested dicts by turning them into AttrDicts too:

d = AttrDict({'a': 1, 'b': {'x': 1, 'y': 2}})
d.b.x == 1 # True

classmethod from_yaml(f, resolve_imports=True)
Returns an AttrDict initialized from the given path or file object f, which must point to a YAML file.

If resolve_imports is True, import: statements are resolved recursively, else they are treated like
any other key.

When resolving import statements, anything defined locally overrides definitions in the imported file.

classmethod from_yaml_string(string)
Returns an AttrDict initialized from the given string, which must be valid YAML.

set_key(key, value)
Set the given key to the given value. Handles nested keys, e.g.:

d = AttrDict()
d.set_key('foo.bar', 1)
d.foo.bar == 1 # True

get_key(key, default=MISSING)
Looks up the given key. Like set_key(), deals with nested keys.

If default is anything but _MISSING, the given default is returned if the key does not exist.

del_key(key)
Delete the given key. Properly deals with nested keys.

as_dict(flat=False)
Return the AttrDict as a pure dict (with nested dicts if necessary).

to_yaml(path=None, convert_objects=True, format_lists=True, **kwargs)
Saves the AttrDict to the given path as a YAML file.

If path is None, returns the YAML string instead.

Any additional keyword arguments are passed to the YAML writer, so can use e.g. indent=4 to override
the default of 2.

convert_objects (defaults to True) controls whether Numpy objects should be converted to regular
Python objects, so that they are properly displayed in the resulting YAML output.

keys_nested(subkeys_as=’list’)
Returns all keys in the AttrDict, sorted, including the keys of nested subdicts (which may be either regular
dicts or AttrDicts).

104 Chapter 2. API documentation

Calliope Documentation, Release 0.6.0

If subkeys_as='list' (default), then a list of all keys is returned, in the form ['a', 'b.b1',
'b.b2'].

If subkeys_as='dict', a list containing keys and dicts of subkeys is returned, in the form ['a',
{'b': ['b1', 'b2']}].

union(other, allow_override=False, allow_replacement=False, al-
low_subdict_override_with_none=False)

Merges the AttrDict in-place with the passed other AttrDict. Keys in other take precedence, and
nested keys are properly handled.

If allow_override is False, a KeyError is raised if other tries to redefine an already defined key.

If allow_replacement, allow “_REPLACE_” key to replace an entire sub-dict.

If allow_subdict_override_with_none is False (default), a key of the form this.that:
None in other will be ignored if subdicts exist in self like this.that.foo: 1, rather than wiping
them.

exception calliope.exceptions.ModelError
ModelErrors should stop execution of the model, e.g. due to a problem with the model formulation or input
data.

exception calliope.exceptions.BackendError

exception calliope.exceptions.ModelWarning
ModelWarnings should be raised for possible model errors, but where execution can still continue.

exception calliope.exceptions.BackendWarning

calliope.exceptions.print_warnings_and_raise_errors(warnings=None, errors=None)
Print warnings and raise ModelError from errors.

Parameters

warnings [list, optional]

errors [list, optional]

calliope.core.util.logging.set_log_level(level)
Set the minimum logging verbosity in a Python console. Higher verbosity levels will include their output and
all those of following levels. Level options (in descending order of verbosity):

• ‘DEBUG’

• ‘SOLVER’ -> Calliope custom level, assigned value of 19, returns solver (e.g. GLPK) stream

• ‘INFO’ -> default level

• ‘WARNING’

• ‘ERROR’

• ‘CRITICAL’

2.2 Index

2.2. Index 105

Calliope Documentation, Release 0.6.0

106 Chapter 2. API documentation

CHAPTER 3

Release history

3.1 Release History

3.1.1 0.6.0 (2018-04-20)

Version 0.6.0 is an almost complete rewrite of most of Calliope’s internals. See New in v0.6.0 for a more detailed
description of the many changes.

Major changes

changed backwards-incompatible Substantial changes to model configuration format, including more verbose names
for most settings, and removal of run configuration files. See 0.6.0 model configuration changes for a full list of
changes.

new backwards-incompatible Complete rewrite of Pyomo backend, including new various new and improved func-
tionality to interact with a built model (see New in v0.6.0).

new Addition of a calliope convert CLI tool to convert 0.5.x models to 0.6.0.

new Experimental ability to link to non-Pyomo backends.

new New constraints: resource_min_use constraint for supply and supply_plus techs.

changed backwards-incompatible Removal of settings and constraints includes subset_x, subset_y, s_time,
r2, r_scale_to_peak, weight. See 0.6.0 model configuration changes for a full list.

changed backwards-incompatible system_margin constraint replaced with reserve_margin constraint.

changed backwards-incompatible Removed the ability to load additional custom constraints or objectives.

3.1.2 0.5.5 (2018-02-28)

• fixed Allow r_area to be non-zero if either of e_cap.max or e_cap.equals is set, not just e_cap.max.

107

Calliope Documentation, Release 0.6.0

• fixed Ensure static parameters in resampled timeseries are caught in constraint generation

• fixed Fix time masking when set_t.csv contains sub-hourly resolutions

3.1.3 0.5.4 (2017-11-10)

Major changes

• fixed r_area_per_e_cap and r_cap_equals_e_cap constraints have been separated from r_area and r_cap con-
straints to ensure that user specified r_area.max and r_cap.max constraints are observed.

• changed technologies and location subsets are now communicated with the solver as a combined loca-
tion:technology subset, to reduce the problem size, by ignoring technologies at locations in which they have
not been allowed. This has shown drastic improvements in Pyomo preprocessing time and memory consump-
tion for certain models.

Other changes

• fixed Allow plotting carrier production using calliope.analysis.plot_carrier_production if that carrier does not
have an associated demand technology (previously would raise an exception).

• fixed Define time clustering method (sum/mean) for more constraints that can be time varying. Previously only
included r and e_eff.

• changed storage technologies default s_cap.max to inf, not 0 and are automatically included in the loc_tech_store
subset. This ensures relevant constraints are not ignored by storage technologies.

• changed Some values in the urban scale MILP example were updated to provide results that would show the
functionality more clearly

• changed technologies have set colours in the urban scale example model, as random colours were often hideous.

• changed ruamel.yaml, not ruamel_yaml, is now used for parsing YAML files.

• fixed e_cap constraints for unmet_demand technologies are ignored in operational mode. Capacities are fixed
for all other technologies, which previously raised an exception, as a fixed infinite capacity is not physically
allowable.

• fixed stack_weights were strings rather than numeric datatypes on reading NetCDF solution files.

3.1.4 0.5.3 (2017-08-22)

Major changes

• new (BETA) Mixed integer linear programming (MILP) capabilities, when using purchase cost and/or
units.max/min/equals constraints. Integer/Binary decision variables will be applied to the relevant
technology-location sets, avoiding unnecessary complexity by describing all technologies with these decision
variables.

Other changes

• changed YAML parser is now ruamel_yaml, not pyyaml. This allows scientific notation of numbers in YAML
files (#57)

• fixed Description of PV technology in urban scale example model now more realistic

108 Chapter 3. Release history

Calliope Documentation, Release 0.6.0

• fixed Optional ramping constraint no longer uses backward-incompatible definitions (#55)

• fixed One-way transmission no longer forces unidirectionality in the wrong direction

• fixed Edge case timeseries resource combinations, where infinite resource sneaks into an incompatible con-
straint, are now flagged with a warning and ignored in that constraint (#61)

• fixed e_cap.equals: 0 sets a technology to a capacity of zero, instead of ignoring the constraint (#63)

• fixed depreciation_getter now changes with location overrides, instead of just checking the technology level
constraints (#64)

• fixed Time clustering now functions in models with time-varying costs (#66)

• changed Solution now includes time-varying costs (costs_variable)

• fixed Saving to NetCDF does not affect in-memory solution (#62)

3.1.5 0.5.2 (2017-06-16)

• changed Calliope now uses Python 3.6 by default. From Calliope 0.6.0 on, Python 3.6 will likely become the
minimum required version.

• fixed Fixed a bug in distance calculation if both lat/lon metadata and distances for links were specified.

• fixed Fixed a bug in storage constraints when both s_cap and e_cap were constrained but no c_rate was
given.

• fixed Fixed a bug in the system margin constraint.

3.1.6 0.5.1 (2017-06-14)

new backwards-incompatible Better coordinate definitions in metadata. Location coordinates are now specified by
a dictionary with either lat/lon (for geographic coordinates) or x/y (for generic Cartesian coordinates), e.g. {lat:
40, lon: -2} or {x: 0, y: 1}. For geographic coordinates, the map_boundary definition for plotting
was also updated in accordance. See the built-in example models for details.

new Unidirectional transmission links are now possible. See the documentation on transmission links.

Other changes

• fixed Missing urban-scale example model files are now included in the distribution

• fixed Edge cases in conversion_plus constraints addressed

• changed Documentation improvements

3.1.7 0.5.0 (2017-05-04)

Major changes

new Urban-scale example model, major revisions to the documentation to accommodate it, and a new calliope.
examples module to hold multiple example models. In addition, the calliope new command now accepts a
--template option to select a template other than the default national-scale example model, e.g.: calliope
new my_urban_model --template=UrbanScale.

new Allow technologies to generate revenue (by specifying negative costs)

3.1. Release History 109

https://calliope.readthedocs.io/en/stable/user/configuration.html#transmission-links

Calliope Documentation, Release 0.6.0

new Allow technologies to export their carrier directly to outside the system boundary

new Allow storage & supply_plus technologies to define a charge rate (c_rate), linking storage capacity (s_cap) with
charge/discharge capacity (e_cap) by s_cap * c_rate => e_cap. As such, either s_cap.max & c_rate or e_cap.max &
c_rate can be defined for a technology. The smallest of s_cap.max * c_rate and e_cap.max will be taken if all three
are defined.

changed backwards-incompatible Revised technology definitions and internal definition of sets and subsets, in par-
ticular subsets of various technology types. Supply technologies are now split into two types: supply and
supply_plus. Most of the more advanced functionality of the original supply technology is now contained
in supply_plus, making it necessary to update model definitions accordingly. In addition to the existing
conversion technology type, a new more complex conversion_plus was added.

Other changes

• changed backwards-incompatible Creating a Model() with no arguments now raises a ModelError rather
than returning an instance of the built-in national-scale example model. Use the new calliope.examples
module to access example models.

• changed Improvements to the national-scale example model and its tutorial notebook

• changed Removed SolutionModel class

• fixed Other minor fixes

3.1.8 0.4.1 (2017-01-12)

• new Allow profiling with the --profile and --profile_filename command-line options

• new Permit setting random seed with random_seed in the run configuration

• changed Updated installation documentation using conda-forge package

• fixed Other minor fixes

3.1.9 0.4.0 (2016-12-09)

Major changes

new Added new methods to deal with time resolution: clustering, resampling, and heuristic timestep selection

changed backwards-incompatible Major change to solution data structure. Model solution is now returned as a single
xarray DataSet instead of multiple pandas DataFrames and Panels. Instead of as a generic HDF5 file, complete
solutions can be saved as a NetCDF4 file via xarray’s NetCDF functionality.

While the recommended way to save and process model results is by NetCDF4, CSV saving functionality has now
been upgraded for more flexibility. Each variable is saved as a separate CSV file with a single value column and as
many index columns as required.

changed backwards-incompatible Model data structures simplified and based on xarray

Other changes

• new Functionality to post-process parallel runs into aggregated NetCDF files in calliope.read

• changed Pandas 0.18/0.19 compatibility

110 Chapter 3. Release history

http://xarray.pydata.org/en/stable/data-structures.html#dataset

Calliope Documentation, Release 0.6.0

• changed 1.11 is now the minimum required numpy version. This version makes datetime64 tz-naive by default,
thus preventing some odd behavior when displaying time series.

• changed Improved logging, status messages, and error reporting

• fixed Other minor fixes

3.1.10 0.3.7 (2016-03-10)

Major changes

changed Per-location configuration overrides improved. All technology constraints can now be set on a per-location
basis, as can costs. This applies to the following settings:

• techname.x_map

• techname.constraints.*

• techname.constraints_per_distance.*

• techname.costs.*

The following settings cannot be overridden on a per-location basis:

• Any other options directly under techname, such as techname.parent or techname.carrier

• techname.costs_per_distance.*

• techname.depreciation.*

Other changes

• fixed Improved installation instructions

• fixed Pyomo 4.2 API compatibility

• fixed Other minor fixes

3.1.11 0.3.6 (2015-09-23)

• fixed Version 0.3.5 changes were not reflected in tutorial

3.1.12 0.3.5 (2015-09-18)

Major changes

new New constraint to constrain total (model-wide) installed capacity of a technology (e_cap.total_max), in
addition to its per-node capacity (e_cap.max)

changed Removed the level option for locations. Level is now implicitly derived from the nested structure given by
the within settings. Locations that define no or an empty within are implicitly at the topmost (0) level.

changed backwards-incompatible Revised configuration of capacity constraints: e_cap_max becomes e_cap.max,
addition of e_cap.min and e_cap.equals (analogous for r_cap, s_cap, rb_cap, r_area). The e_cap.equals
constraint supersedes e_cap_max_force (analogous for the other constraints). No backwards-compatibility is
retained, models must change all constraints to the new formulation. See List of possible constraints for a complete
list of all available constraints. Some additional constraints have name changes:

3.1. Release History 111

Calliope Documentation, Release 0.6.0

• e_cap_max_scale becomes e_cap_scale

• rb_cap_follows becomes rb_cap_follow, and addition of rb_cap_follow_mode

• s_time_max becomes s_time.max

changed backwards-incompatible All optional constraints are now grouped together, under constraints.
optional:

• constraints.group_fraction.group_fraction becomes constraints.optional.
group_fraction

• constraints.ramping.ramping_rate becomes constraints.optional.ramping_rate

Other changes

• new analysis.map_results function to extract solution details from multiple parallel runs

• new Various other additions to analysis functionality, particularly in the analysis_utils module

• new analysis.get_levelized_cost to get technology and location specific costs

• new Allow dynamically loading time mask functions

• changed Improved summary table in the model solution: now shows only aggregate information for transmission
technologies, also added missing s_cap column and technology type

• fixed Bug causing some total levelized transmission costs to be infinite instead of zero

• fixed Bug causing some CSV solution files to be empty

3.1.13 0.3.4 (2015-04-27)

• fixed Bug in construction and fixed O&M cost calculations in operational mode

3.1.14 0.3.3 (2015-04-03)

Major changes

changed In preparation for future enhancements, the ordering of location levels is flipped. The top-level locations
at which balancing takes place is now level 0, and may contain level 1 locations. This is a backwards-incompatible
change.

changed backwards-incompatible Refactored time resolution adjustment functionality. Can now give a list of masks in
the run configuration which will all be applied, via time.masks, with a base resolution via time.resolution (or
instead, as before, load a resolution series from file via time.file). Renamed the time_functions submodule
to time_masks.

Other changes

• new Models and runs can have a name

• changed More verbose calliope run

• changed Analysis tools restructured

• changed Renamed debug.keepfiles setting to debug.keep_temp_files and better documented de-
bug configuration

112 Chapter 3. Release history

Calliope Documentation, Release 0.6.0

3.1.15 0.3.2 (2015-02-13)

• new Run setting model_override allows specifying the path to a YAML file with overrides for the
model configuration, applied at model initialization (path is given relative to the run configuration file used).
This is in addition to the existing override setting, and is applied first (so override can override
model_override).

• new Run settings output.save_constraints and output.save_constraints_options

• new Run setting parallel.post_run

• changed Solution column names more in line with model component names

• changed Can specify more than one output format as a list, e.g. output.format: ['csv', 'hdf']

• changed Run setting parallel.additional_lines renamed to parallel.pre_run

• changed Better error messages and CLI error handling

• fixed Bug on saving YAML files with numpy dtypes fixed

• Other minor improvements and fixes

3.1.16 0.3.1 (2015-01-06)

• Fixes to time_functions

• Other minor improvements and fixes

3.1.17 0.3.0 (2014-12-12)

• Python 3 and Pyomo 4 are now minimum requirements

• Significantly improved documentation

• Improved model solution management by saving to HDF5 instead of CSV

• Calculate shares of technologies, including the ability to define groups for the purpose of computing shares

• Improved operational mode

• Simplified time_tools

• Improved output plotting, including dispatch, transmission flows, and installed capacities, and added model
configuration to support these plots

• r can be specified as power or energy

• Improved solution speed

• Better error messages and basic logging

• Better sanity checking and error messages for common mistakes

• Basic distance-dependent constraints (only implemented for e_loss and cost of e_cap for now)

• Other improvements and fixes

3.1. Release History 113

Calliope Documentation, Release 0.6.0

3.1.18 0.2.0 (2014-03-18)

• Added cost classes with a new set k

• Added energy carriers with a new set c

• Added conversion technologies

• Speed improvements and simplifications

• Ability to arbitrarily nest model configuration files with import statements

• Added additional constraints

• Improved configuration handling

• Ability to define timestep options in run configuration

• Cleared up terminology (nodes vs locations)

• Improved TimeSummarizer masking and added new masks

• Removed technology classes

• Improved operational mode with results output matching planning mode and dynamic updating of parameters
in model instance

• Working parallel_tools

• Improved documentation

• Apache 2.0 licensed

• Other improvements and fixes

3.1.19 0.1.0 (2013-12-10)

• Some semblance of documentation

• Usable built-in example model

• Improved and working TimeSummarizer

• More flexible masking for TimeSummarizer

• Ability to add additional constraints without editing core source code

• Some basic test coverage

• Working parallel run configuration system

Release history

114 Chapter 3. Release history

CHAPTER 4

License

Copyright 2013-2018 Calliope contributors listed in AUTHORS

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

115

http://www.apache.org/licenses/LICENSE-2.0

Calliope Documentation, Release 0.6.0

116 Chapter 4. License

Bibliography

[Fripp2012] Fripp, M., 2012. Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renew-
able Energy. Environ. Sci. Technol., 46(11), p.6371–6378. DOI: 10.1021/es204645c

[Heussen2010] Heussen, K. et al., 2010. Energy storage in power system operation: The power nodes modeling
framework. In Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES. pp. 1–8.
DOI: 10.1109/ISGTEUROPE.2010.5638865

[Howells2011] Howells, M. et al., 2011. OSeMOSYS: The Open Source Energy Modeling System: An introduction
to its ethos, structure and development. Energy Policy, 39(10), p.5850–5870. DOI: 10.1016/j.enpol.2011.06.033

[Hunter2013] Hunter, K., Sreepathi, S. & DeCarolis, J.F., 2013. Modeling for insight using Tools for Energy Model
Optimization and Analysis (Temoa). Energy Economics, 40, p.339–349. DOI: 10.1016/j.eneco.2013.07.014

117

http://dx.doi.org/10.1021/es204645c
http://dx.doi.org/10.1109/ISGTEUROPE.2010.5638865
http://dx.doi.org/10.1016/j.enpol.2011.06.033
http://dx.doi.org/10.1016/j.eneco.2013.07.014

Calliope Documentation, Release 0.6.0

118 Bibliography

Python Module Index

c
calliope, 1
calliope.backend.pyomo.constraints.capacity,

86
calliope.backend.pyomo.constraints.conversion,

93
calliope.backend.pyomo.constraints.conversion_plus,

93
calliope.backend.pyomo.constraints.costs,

89
calliope.backend.pyomo.constraints.dispatch,

88
calliope.backend.pyomo.constraints.energy_balance,

85
calliope.backend.pyomo.constraints.export,

90
calliope.backend.pyomo.constraints.milp,

91
calliope.backend.pyomo.constraints.network,

94
calliope.backend.pyomo.constraints.policy,

94
calliope.backend.pyomo.objective, 84
calliope.backend.pyomo.variables, 84
calliope.core.time.clustering, 100
calliope.core.time.funcs, 101
calliope.core.time.masks, 100
calliope.core.util.logging, 105
calliope.examples, 57
calliope.exceptions, 105

119

Calliope Documentation, Release 0.6.0

120 Python Module Index

Index

A
access_model_inputs() (cal-

liope.backend.pyomo.interface.BackendInterfaceMethods
method), 103

activate_constraint() (cal-
liope.backend.pyomo.interface.BackendInterfaceMethods
method), 103

as_dict() (calliope.core.attrdict.AttrDict method), 104
AttrDict (class in calliope.core.attrdict), 104

B
BackendError, 105
BackendInterfaceMethods (class in cal-

liope.backend.pyomo.interface), 103
BackendWarning, 105
balance_conversion_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.conversion),
93

balance_conversion_plus_primary_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.conversion_plus),
93

balance_conversion_plus_tiers_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.conversion_plus),
94

balance_demand_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.energy_balance),
85

balance_storage_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.energy_balance),
86

balance_supply_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.energy_balance),
85

balance_supply_plus_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.energy_balance),
86

balance_transmission_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.energy_balance),
86

C
calliope (module), 1
calliope.backend.pyomo.constraints.capacity (module),

86
calliope.backend.pyomo.constraints.conversion (mod-

ule), 93
calliope.backend.pyomo.constraints.conversion_plus

(module), 93
calliope.backend.pyomo.constraints.costs (module), 89
calliope.backend.pyomo.constraints.dispatch (module),

88
calliope.backend.pyomo.constraints.energy_balance

(module), 85
calliope.backend.pyomo.constraints.export (module), 90
calliope.backend.pyomo.constraints.milp (module), 91
calliope.backend.pyomo.constraints.network (module),

94
calliope.backend.pyomo.constraints.policy (module), 94
calliope.backend.pyomo.objective (module), 84
calliope.backend.pyomo.variables (module), 84
calliope.core.time.clustering (module), 100
calliope.core.time.funcs (module), 101
calliope.core.time.masks (module), 100
calliope.core.util.logging (module), 105
calliope.examples (module), 57
calliope.exceptions (module), 105
capacity() (calliope.analysis.plotting.plotting.ModelPlotMethods

method), 102
carrier_consumption_max_constraint_rule() (in module

calliope.backend.pyomo.constraints.dispatch),
88

carrier_consumption_max_milp_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 92

carrier_production_max_constraint_rule() (in module
calliope.backend.pyomo.constraints.dispatch),
88

121

Calliope Documentation, Release 0.6.0

carrier_production_max_conversion_plus_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.conversion_plus),
93

carrier_production_max_conversion_plus_milp_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 91

carrier_production_max_milp_constraint_rule() (in mod-
ule calliope.backend.pyomo.constraints.milp),
91

carrier_production_min_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.dispatch), 88

carrier_production_min_conversion_plus_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.conversion_plus),
93

carrier_production_min_conversion_plus_milp_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 91

carrier_production_min_milp_constraint_rule() (in mod-
ule calliope.backend.pyomo.constraints.milp),
91

check_feasibility() (in module cal-
liope.backend.pyomo.objective), 84

copy() (calliope.core.attrdict.AttrDict method), 104
cost_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.costs),
89

cost_investment_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.costs), 89

cost_minimization() (in module cal-
liope.backend.pyomo.objective), 84

cost_var_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.costs),
90

cost_var_conversion_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.conversion),
93

cost_var_conversion_plus_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.conversion_plus),
94

D
del_key() (calliope.core.attrdict.AttrDict method), 104

E
energy_capacity_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.capacity),
88

energy_capacity_max_purchase_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 92

energy_capacity_min_purchase_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 92

energy_capacity_storage_constraint_rule() (in module
calliope.backend.pyomo.constraints.capacity),
87

energy_capacity_systemwide_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.capacity),
88

energy_capacity_units_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.milp), 92

export_balance_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.export),
90

export_max_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.export),
90

extreme() (in module calliope.core.time.masks), 100
extreme_diff() (in module calliope.core.time.masks), 101

F
from_yaml() (calliope.core.attrdict.AttrDict class

method), 104
from_yaml_string() (calliope.core.attrdict.AttrDict class

method), 104

G
get_clusters() (in module calliope.core.time.clustering),

100
get_formatted_array() (calliope.Model method), 99
get_key() (calliope.core.attrdict.AttrDict method), 104
group_share_carrier_prod_constraint_rule() (in module

calliope.backend.pyomo.constraints.policy), 94
group_share_energy_cap_constraint_rule() (in module

calliope.backend.pyomo.constraints.policy), 94

I
init_from_dict() (calliope.core.attrdict.AttrDict method),

104
initialize_decision_variables() (in module cal-

liope.backend.pyomo.variables), 84

K
keys_nested() (calliope.core.attrdict.AttrDict method),

104

M
milp() (in module calliope.examples), 57
Model (class in calliope), 99
ModelError, 105
ModelPlotMethods (class in cal-

liope.analysis.plotting.plotting), 101

122 Index

Calliope Documentation, Release 0.6.0

ModelWarning, 105

N
national_scale() (in module calliope.examples), 57

O
operate() (in module calliope.examples), 57

P
print_warnings_and_raise_errors() (in module cal-

liope.exceptions), 105

R
ramping_constraint() (in module cal-

liope.backend.pyomo.constraints.dispatch),
89

ramping_down_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.dispatch),
89

ramping_up_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.dispatch),
89

rerun() (calliope.backend.pyomo.interface.BackendInterfaceMethods
method), 103

resample() (in module calliope.core.time.funcs), 101
reserve_margin_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.policy),
95

resource_area_capacity_per_loc_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.capacity),
88

resource_area_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.capacity),
87

resource_area_per_energy_capacity_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.capacity),
87

resource_availability_supply_plus_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.energy_balance),
85

resource_capacity_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.capacity),
87

resource_capacity_equals_energy_capacity_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.capacity),
87

resource_max_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.dispatch),
89

run() (calliope.Model method), 99

S
save_debug_data() (calliope.Model method), 99
set_key() (calliope.core.attrdict.AttrDict method), 104
set_log_level() (in module calliope.core.util.logging), 105
storage_capacity_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.capacity),
86

storage_capacity_max_purchase_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 92

storage_capacity_min_purchase_constraint_rule()
(in module cal-
liope.backend.pyomo.constraints.milp), 92

storage_capacity_units_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.milp), 92

storage_max_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.dispatch),
89

summary() (calliope.analysis.plotting.plotting.ModelPlotMethods
method), 102

symmetric_transmission_constraint_rule() (in module
calliope.backend.pyomo.constraints.network),
94

system_balance_constraint_rule() (in module cal-
liope.backend.pyomo.constraints.energy_balance),
85

T
time_clustering() (in module calliope.examples), 57
time_masking() (in module calliope.examples), 57
time_resampling() (in module calliope.examples), 57
timeseries() (calliope.analysis.plotting.plotting.ModelPlotMethods

method), 101
to_csv() (calliope.Model method), 99
to_netcdf() (calliope.Model method), 99
to_yaml() (calliope.core.attrdict.AttrDict method), 104
transmission() (calliope.analysis.plotting.plotting.ModelPlotMethods

method), 102

U
union() (calliope.core.attrdict.AttrDict method), 105
unit_capacity_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.milp), 91
unit_commitment_constraint_rule() (in module cal-

liope.backend.pyomo.constraints.milp), 91
update_costs_investment_purchase_constraint() (in mod-

ule calliope.backend.pyomo.constraints.milp),
93

update_costs_investment_units_constraint() (in module
calliope.backend.pyomo.constraints.milp), 92

Index 123

Calliope Documentation, Release 0.6.0

update_costs_var_constraint() (in module cal-
liope.backend.pyomo.constraints.export),
90

update_param() (calliope.backend.pyomo.interface.BackendInterfaceMethods
method), 103

update_system_balance_constraint() (in module cal-
liope.backend.pyomo.constraints.export),
90

urban_scale() (in module calliope.examples), 57

124 Index

	User guide
	Introduction
	Download and installation
	New in v0.6.0
	Building a model
	Running a model
	Analysing a model
	Tutorials
	More info
	Development guide

	API documentation
	API Documentation
	Index

	Release history
	Release History

	License
	Bibliography
	Python Module Index

