
Calliope Documentation
Release 0.5.0

Stefan Pfenninger

May 04, 2017

Contents

1 User guide 3
1.1 Introduction . 3
1.2 Download and installation . 4
1.3 Components to build a model . 6
1.4 Tutorials . 12
1.5 Model formulation . 29
1.6 Model configuration . 39
1.7 Run configuration . 46
1.8 Running the model . 49
1.9 Analyzing results . 51
1.10 Configuration reference . 53
1.11 Built-in example models . 67
1.12 Development guide . 77

2 API documentation 83
2.1 API Documentation . 83
2.2 Index . 95

3 Release history 97
3.1 Release History . 97

4 License 103

Bibliography 105

Python Module Index 107

i

ii

Calliope Documentation, Release 0.5.0

v0.5.0 (Release history)

Calliope is a framework to develop energy system models using a modern and open source Python-based toolchain.

This is the documentation for version 0.5.0. See the main project website for contact details and other useful informa-
tion.

Calliope is a framework to develop energy system models, with a focus on flexibility, high spatial and temporal
resolution, the ability to execute many runs based on the same base model, and a clear separation of framework (code)
and model (data).

A model based on Calliope consists of a collection of text files (in YAML and CSV formats) that define the technolo-
gies, locations and resource potentials. Calliope takes these files, constructs an optimization problem, solves it, and
reports results in the form of xarray Datasets which in turn can easily be converted into Pandas data structures, for
easy analysis with Calliope’s built-in tools or the standard Python data analysis stack.

Calliope is developed in the open on GitHub and contributions are very welcome (see the Development guide). See
the list of open issues and planned milestones for an overview of where development is heading, and join us on Gitter
to ask questions or discuss code.

Main features:

• Generic technology definition allows modeling any mix of production, storage and consumption

• Resolved in space: define locations with individual resource potentials

• Resolved in time: read time series with arbitrary resolution

• Model specification in an easy-to-read and machine-processable YAML format

• Able to run on computing clusters

• Easily extensible in a modular way: custom constraint generator functions and custom time mask functions

• Uses a state-of-the-art Python toolchain based on Pyomo, xarray, and Pandas

• Freely available under the Apache 2.0 license

Contents 1

http://www.callio.pe/
http://xarray.pydata.org/en/stable/
http://pandas.pydata.org/
https://github.com/calliope-project/calliope
https://github.com/calliope-project/calliope/issues
https://github.com/calliope-project/calliope/milestones
https://gitter.im/calliope-project/calliope
https://software.sandia.gov/trac/coopr/wiki/Pyomo
http://xarray.pydata.org/
http://pandas.pydata.org/

Calliope Documentation, Release 0.5.0

2 Contents

CHAPTER 1

User guide

Introduction

Energy system models allow analysts to form internally coherent scenarios of how energy is extracted, converted,
transported, and used, and how these processes might change in the future. These models have been gaining renewed
importance as methods to help navigate the climate policy-driven transformation of the energy system.

Calliope is an attempt to design an energy system model from the ground of up with specific design goals in mind
(see below). Therefore, the model approach and data format layout may be different from approaches used in other
models. The design of the nodes approach used in Calliope was influenced by the power nodes modeling framework
by [Heussen2010].

Calliope was designed to address questions around the transition to renewable energy, so there are tools that are likely
to be more suitable for other types of questions. In particular, the following related energy modeling systems are
available under open source or free software licenses:

• SWITCH: A power system model focused on renewables integration, using multi-stage stochastic linear opti-
mization, as well as hourly resource potential and demand data. Written in the commercial AMPL language and
GPL-licensed [Fripp2012].

• Temoa: An energy system model with multi-stage stochastic optimization functionality which can be de-
ployed to computing clusters, to address parametric uncertainty. Written in Python/Pyomo and AGPL-licensed
[Hunter2013].

• OSeMOSYS: A simplified energy system model similar to the MARKAL/TIMES model families, which can
be used as a stand-alone tool or integrated in the LEAP energy model. Written in GLPK, a free subset of the
commercial AMPL language, and Apache 2.0-licensed [Howells2011].

Additional energy models that are partially or fully open can be found on the Open Energy Modelling Initiative’s wiki.

Rationale

Calliope was designed with the following goals in mind:

3

http://switch-model.org/
http://temoaproject.org/
http://www.osemosys.org/
http://www.energycommunity.org/LEAP/
http://wiki.openmod-initiative.org/wiki/Model_fact_sheets

Calliope Documentation, Release 0.5.0

• Designed from the ground up to analyze energy systems with high shares of renewable energy or other variable
generation

• Formulated to allow arbitrary spatial and temporal resolution, and equipped with the necessary tools to deal with
time series input data

• Allow easy separation of model code and data, and modular extensibility of model code

• Make models easily modifiable, archiveable and auditable (e.g. in a Git repository), by using well-defined and
human-readable text formats

• Simplify the definition and deployment of large numbers of model runs to high-performance computing clusters

• Able to run stand-alone from the command-line, but also provide an API for programmatic access and embed-
ding in larger analyses

• Be a first-class citizen of the Python world (installable with conda and pip, with properly documented and
tested code that mostly conforms to PEP8)

• Have a free and open-source code base under a permissive license

Acknowledgments

Initial development was partially funded by the Grantham Institute at Imperial College London and the European
Institute of Innovation & Technology’s Climate-KIC program.

License

Calliope is released under the Apache 2.0 license, which is a permissive open-source license much like the MIT or
BSD licenses. This means that Calliope can be incorporated in both commercial and non-commercial projects.

Copyright 2013-2017 Calliope contributors listed in AUTHORS

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

References

Download and installation

Requirements

Calliope has been tested on Linux, macOS, and Windows.

Running Calliope requires four things:

4 Chapter 1. User guide

http://www.imperial.ac.uk/grantham
http://www.climate-kic.org

Calliope Documentation, Release 0.5.0

1. The Python programming language, version 3.5 or higher.

2. A number of Python add-on modules (see below for the complete list).

3. A solver: Calliope has been tested with GLPK, CPLEX, and Gurobi. Any other solver that is compatible with
Pyomo, which Calliope uses to construct its models, should work.

4. The Calliope software itself.

Recommended installation method

The easiest way to get a working Calliope installation is to use the free Anaconda Python distribution and its package
manager, conda.

With Anaconda installed, you can create a new Python 3.5 environment called “calliope” with all the necessary mod-
ules, including the free and open source GLPK solver, with the following command:

$ conda create -c conda-forge -n calliope python=3.5 calliope

To use Calliope, you need to activate the “calliope” environment each time. On Linux and macOS:

$ source activate calliope

On Windows:

$ activate calliope

You are now ready to use Calliope together with the free and open source GLPK solver. Read the next section for
more information on alternative solvers.

Solvers

You need at least one of the solvers supported by Pyomo installed. GLPK or Gurobi are recommended and have been
confirmed to work with Calliope. Refer to the documentation of your solver on how to install it. Some details on
GLPK and Gurobi are given below. Another commercial alternative is CPLEX.

GLPK

GLPK is free and open-source, but can take too much time and/or too much memory on larger problems. If using the
recommended installation approach above, GLPK is already installed in the “calliope” environment. To install GLPK
manually, refer to the GLPK website.

Gurobi

Gurobi is commercial but significantly faster than GLPK, which is relevant for larger problems. It needs a license to
work, which can be obtained for free for academic use by creating an account on gurobi.com.

Like Calliope itself, Gurobi can also be installed via conda:

$ conda install -c gurobi gurobi

After installing, log on to the Gurobi website and obtain a (free academic or paid commercial) license, then activate it
on your system via the instructions given online (using the grbgetkey command).

1.2. Download and installation 5

https://www.gnu.org/software/glpk/
http://ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.gurobi.com/
https://store.continuum.io/cshop/anaconda/
http://ibm.com/software/integration/optimization/cplex-optimization-studio/
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://www.gurobi.com/
http://www.gurobi.com/

Calliope Documentation, Release 0.5.0

Python module requirements

The following Python modules and their dependencies are required:

• Pyomo

• Pandas

• Xarray

• NetCDF4

• Numexpr

• PyYAML

• Click

Matplotlib is optional but necessary to graphically display results.

These modules are optional but necessary to display transmission flows on a map:

• NetworkX

• Basemap

These modules are optional and used for the example notebook in the tutorial:

• Seaborn

• Jupyter

Components to build a model

This section proves an overview of how a model is built using Calliope.

Calliope allows a modeler to define technologies with arbitrary characteristics by “inheriting” basic traits from a
number of included base technologies, which are described below. Technologies can take a resource from outside
of the modeled system and turn it into a specific energy carrier in the system. These technologies, together with
the locations specified in the model, result in a set of nodes: the energy balance equations indexed over the set of
technologies and locations.

Terminology

The terminology defined here is used throughout the documentation and the model code and configuration files:

• Technology: a technology that produces, consumes, converts or transports energy

• Location: a site which can contain multiple technologies and which may contain other locations for energy
balancing purposes

• Node: a combination of technology and location resulting in specific energy balance equations (see below)

• Resource: a source or sink of energy that can (or must) be used by a technology to introduce into or remove
energy from the system

• Carrier: an energy carrier that groups technologies together into the same network, for example
electricity or heat.

As more generally in constrained optimization, the following terms are also used:

• Parameter: a fixed coefficient that enters into model equations

6 Chapter 1. User guide

https://software.sandia.gov/trac/pyomo/wiki/Pyomo
http://pandas.pydata.org/
http://xarray.pydata.org/
https://github.com/Unidata/netcdf4-python
https://github.com/pydata/numexpr
http://pyyaml.org/
http://click.pocoo.org/
http://matplotlib.org/
https://web.stanford.edu/~mwaskom/software/seaborn/
http://jupyter.org/

Calliope Documentation, Release 0.5.0

• Variable: a variable coefficient (decision variable) that enters into model equations

• Set: an index in the algebraic formulation of the equations

• Constraint: an equality or inequality expression that constrains one or several variables

Index sets

Most parameters, variables, and constraints are formulated with respect to at least some of the indices below:

• c: carriers

• y: technologies

• x: locations

• t: time steps

• k: cost classes

In some cases, these index sets may have only a single member. For example, if only the power system is modeled,
the set c (carriers) will have a single member, power.

Technology types

Each technology (that is, each member of the set y) is of a specific technology type, which determines how the
framework models the technology and what properties it can have. The technology type is specified by inheritance
from one of seven abstract base technologies (see Technologies in the model configuration section for more details on
this inheritance model):

• Supply: Supplies energy from a resource to a carrier (a source) (base technology: supply)

• Supply_plus: A more feature rich version of supply. It can have storage of resource before conversion to
carrier, can define an additional secondary resource, and can have several more intermediate loss factors (base
technology: supply_plus)

• Demand: Acts like supply but with a resource that is negative (a sink). Draws energy from a carrier to satisfy a
resource demand (base technology: demand)

• Conversion: Converts energy from one carrier to another, can have neither resource nor storage associated with
it (base technology: conversion)

• Conversion_plus: A more feature rich version of conversion. There can be several carriers in, converted to
several carriers out (base technology: conversion_plus)

• Storage: Can store energy of a specific carrier, cannot have any resource (base technology: storage)

• Transmission: Transports energy of a specific carrier from one location to another, can have neither resource
nor storage (base technology: transmission)

The internal definition of these abstract base technologies is given in the configuration reference.

Cost classes

Costs are modeled in Calliope via cost classes. By default, only one classes is defined: monetary.

Technologies can define costs for components (installed capacity), for operation & maintenance, and for export for
any cost class. Costs can be given as negative values, which defines a revenue rather than a cost.

1.3. Components to build a model 7

Calliope Documentation, Release 0.5.0

The primary cost class, monetary, is used to calculate levelized costs and by default enters into the objective func-
tion. Therefore each technology should define at least one type of monetary cost, as it would be considered free
otherwise. By default, any cost not specified is assumed to be zero.

Only the monetary cost class is entered into the default objective function, but other cost classes can be defined
for accounting purposes, e.g. emissions to account for greenhouse gas emissions. Additional cost classes can be
created simply by adding them to the definition of costs for a technology (see the model configuration section for more
detail on this).

Revenue

It is possible to specify revenues for technologies simply by setting a negative cost value. For example, to consider a
feed-in tariff for PV generation, it could be given a negative operational cost equal to the real operational cost minus
the level of feed-in tariff received.

Putting technologies and locations together: Nodes

In the model definition, locations can be defined, and for each location (or for groups of locations), technologies can
be permitted. The details of this are laid out in the model configuration section.

A node is the combination of a specific location and technology, and is how Calliope internally builds the model. For
a given location, x, and technology, y, a set of equations defined over (x, y) models that specific node.

The most important node variables are laid out below, but more detail is also available in the section Model formulation.

Node energy balance

The basic formulation of each node uses a set of energy balance equations. Depending on the technology type, different
energy balance variables are used:

• s(y, x, t): storage level at time t This is used for storage and supply_plus technologies.

• r(y, x, t): resource to technology (+ production) at time t. If storage is defined for supply_plus, this is resource to storage flow.
This is used for supply_plus technologies.

• r2(y, x, t): secondary resource to technology at time t This is used for supply_plus technologies.

• c_prod(c, y, x, t): production of a given energy carrier by a technology (+ supply) at time t.
This is used for all technologies, except demand.

• c_con(c, y, x, t): consumption of a given energy carrier by a technology at time t This is used
for all technologies, except supply and supply_plus.

The resulting losses associated with energy balancing also depend on the technology type. Each technology node is
mapped here, with details on interactions given in Model configuration.

The secondary resource can deliver energy to storage via r_2 alongside the primary energy source (via r), but only
if the necessary setting (constraints.allow_r2:) is enabled for a technology. Optionally, this can be allowed
only during the startup_time: (defined in the model-wide settings), e.g. to allow storage to be filled up initially.

Each node can also have the following capacity variables:

• s_cap(y, x): installed storage capacity This is used for storage and supply_plus technologies.

• r_cap(y, x): installed resource to storage conversion capacity This is used for supply_plus tech-
nologies.

• r_area(y, x): installed resource collector area This is used for supply, supply_plus, and demand
technologies.

8 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Fig. 1.1: The layout of nodes, and their energy balance variables, associated with each technology type. The outward
arrows show where losses occur. Depending on a technology, some of these steps may be skipped. For example, most
supply_plus technologies will have no parasitic losses.

1.3. Components to build a model 9

Calliope Documentation, Release 0.5.0

• e_cap(y, x): installed storage to carrier conversion capacity This is used for all technologies,.

• r2_cap(y, x): installed secondary resource to storage conversion capacity This is used for
supply_plus technologies.

Note: For nodes that have an internal (parasitic) energy consumption, e_cap_net is also included in the solution.
This specifies the net conversion capacity, while e_cap(y, x) is gross capacity.

When defining a technology, it must be given at least some constraints, that is, options that describe the functioning of
the technology. If not specified, all of these are inherited from the default technology definition (with default values
being 0 for capacities and 1 for efficiencies). Some examples of such options are:

• resource(y, x, t): available resource (+ source, - sink)

• s_cap.max(y): maximum storage capacity

• s_loss(y, t): storage loss rate

• r_area.max(y): maximum resource collector area

• r_eff(y): resource efficiency

• r_cap.max(y): maximum resource to storage conversion capacity

• e_eff(y, t): resource/storage/carrier_in to carrier_out conversion efficiency

• e_cap.max(y): maximum installed carrier conversion capacity, applied to carrier_out

Note: Generally, these constraints are defined on a per-technology basis. However, some (but not all) of them may
be overridden on a per-location basis. This allows, for example, setting different constraints on the allowed maximum
capacity for a specific technology at each location separately. See Model configuration for details on this.

Finally, each node tracks its costs (+ costs, - revenue), formulated in two constraints (more details in the Model
formulation section):

• cost_fixed: construction and fixed operational and maintenance (O&M) costs (i.e., costs per unit of installed
capacity)

• cost_var: variable O&M and export costs (i.e., costs per produced unit of output)

Note: Efficiencies, available resources, and costs can be defined to vary in time. Equally (and more likely) they can
be given as single values. For more detail on time-varying versus constant values, see the corresponding section in the
model formulation chapter.

Linking locations

Locations are linked together by transmission technologies. By consuming an energy carrier in one location and
outputting it in another, linked location, transmission technologies allow resources to be drawn from the system at a
different location from where they are brought into it.

Transmission links are considered by the system as nodes at each end of the link, with the same technology at each
end. In this regard, the same nodal energy balance equations apply. Additionally, the user can utilise per-distance
constraints and costs. For more information on available constraints/costs, see the Model configuration section.

10 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Fig. 1.2: Schematic of location linking, including interaction of resource, nodes, and energy carriers. The dashed
box defines the system under consideration. Resource flows (green) are lossless, whereas losses can occur along
transmission links (black).

1.3. Components to build a model 11

Calliope Documentation, Release 0.5.0

The next section is a brief tutorial. Following this, Model formulation details the constraints that actually implement all
these formulations mathematically. The section following it, Model configuration, details how a model is configured,
and how the various components outlined here are defined in a working model.

Tutorials

Before going through these tutorials, it is recommended to have a brief look at the components section to become
familiar with the terminology and modeling approach used.

The tutorials are based on the built-in example models, they explain the key steps necessary to set up and run simple
models. Refer to the other parts of the documentation for more detailed information on configuring and running more
complex models.

The built-in examples are simple on purpose, to show the key components of a Calliope model.

The first part of the tutorial builds a model for part of a national grid, exhibiting the following Calliope functionality:

• Use of supply, supply_plus, demand, storage and transmission technologies

• Nested locations

• Multiple cost types

The second part of the tutorial builds a model for part of a district network, exhibiting the following Calliope function-
ality:

• Use of supply, demand, conversion, conversion_plus, and transmission technologies

• Use of multiple energy carriers

• Revenue generation, by carrier export

Tutorial 1: national scale

This example consists of two possible power supply technologies, a power demand at two locations, the possibility
for battery storage at one of the locations, and a transmission technology linking the two. The diagram below gives an
overview:

Supply-side technologies

The example model defines two power supply technologies.

The first is ccgt (combined-cycle gas turbine), which serves as an example of a simple technology with an infinite
resource. Its only constraints are the cost of built capacity (e_cap) and a constraint on its maximum built capacity.

The definition of this technology in the example model’s configuration looks as follows:

ccgt:
name: 'Combined cycle gas turbine'
color: '#FDC97D'
stack_weight: 200
parent: supply
carrier_out: power
constraints:

r: inf
e_eff: 0.5
e_cap.max: 40000 # kW

costs:

12 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Fig. 1.3: Overview of the built-in national-scale example model

Fig. 1.4: The layout of a supply node, in this case ccgt, which has an infinite resource, a carrier conversion efficiency
(𝑒𝑒𝑓𝑓), and a constraint on its maximum built 𝑒𝑐𝑎𝑝 (which puts an upper limit on 𝑒𝑝𝑟𝑜𝑑).

1.4. Tutorials 13

Calliope Documentation, Release 0.5.0

monetary:
e_cap: 750 # USD per kW
om_fuel: 0.02 # USD per kWh

There are a few things to note. First, ccgt defines a name, a color (given as an HTML color code), and a stack_weight.
These are used by the built-in analysis tools when analyzing model results. Second, it specifies its parent, supply,
and its carrier_out, power, thus setting itself up as a power supply technology. This is followed by the definition of
constraints and costs (the only cost class used is monetary, but this is where other “costs”, such as emissions, could be
defined).

Note: There are technically no restrictions on the units used in model definitions. Usually, the units will be kW and
kWh, alongside a currency like USD for costs. It is the responsibility of the modeler to ensure that units are correct
and consistent. Some of the analysis functionality in the analysis module assumes that kW and kWh are used when
drawing figure and axis labels, but apart from that, there is nothing preventing the use of other units.

The second technology is csp (concentrating solar power), and serves as an example of a complex supply_plus
technology making use of:

• a finite resource based on time series data

• built-in storage

• plant-internal losses (p_eff)

Fig. 1.5: The layout of a more complex node, in this case csp, which makes use of most node-level functionality
available, with the exception of a secondary resource.

This definition in the example model’s configuration is more verbose:

csp:
name: 'Concentrating solar power'
color: '#99CB48'
stack_weight: 100
parent: supply_plus
carrier_out: power
constraints:

use_s_time: true
s_time.max: 24
s_loss: 0.002
r: file # Will look for `csp_r.csv` in data directory
e_eff: 0.4
p_eff: 0.9

14 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

r_area.max: inf
e_cap.max: 10000

costs:
monetary:

s_cap: 50
r_area: 200
r_cap: 200
e_cap: 1000
om_var: 0.002

depreciation:
monetary:

interest: 0.12

Again, csp has the definitions for name, color, stack_weight, parent, and carrier_out. Its constraints are more numer-
ous: it defines a maximum storage time (s_time.max), an hourly storage loss rate (s_loss), then specifies that
its resource should be read from a file (more on that below). It also defines a carrier conversion efficiency of 0.4 and
a parasitic efficiency of 0.9 (i.e., an internal loss of 0.1). Finally, the resource collector area and the installed carrier
conversion capacity are constrained to a maximum.

The costs are more numerous as well, and include monetary costs for all relevant components along the conversion
from resource to carrier (power): storage capacity, resource collector area, resource conversion capacity, energy con-
version capacity, and variable operational and maintenance costs. Finally, it also overrides the default value for the
monetary interest rate.

Storage technologies

The second location allows a limited amount of battery storage to be deployed to better balance the system. This
technology is defined as follows:

battery:
name: 'Battery storage'
color: '#DC5CE5'
parent: storage
carrier: power
constraints:

e_cap.max: 1000 # kW
s_cap.max: inf
c_rate: 4
e_eff: 0.95 # 0.95 * 0.95 = 0.9025 round trip efficiency
s_loss: 0 # No loss over time assumed

costs:
monetary:

s_cap: 200 # USD per kWh storage capacity

The contraints give a maximum installed generation capacity for battery storage together with a charge rate (C-rate)
of 4, which in turn limits the storage capacity. In the case of a storage technology, e_eff applies twice: on charging
and discharging. In addition, storage technologies can lose stored energy over time – in this case, we set this loss to
zero.

Other technologies

Three more technologies are needed for a simple model. First, a definition of power demand and unmet power demand:

demand_power:
name: 'Power demand'

1.4. Tutorials 15

Calliope Documentation, Release 0.5.0

parent: demand
carrier: power

unmet_demand_power:
name: 'Unmet power demand'
parent: unmet_demand
carrier: power

Power demand is a technology like any other. We will associate an actual demand time series with the demand
technology later. The parent of unmet_demand_power, unmet_demand, is a special kind of supply technology
with an unlimited resource but very high cost. It allows a model to remain mathematically feasible even if insufficient
supply is available to meet demand, and model results can easily be examined to verify whether there was any unmet
demand. There is no requirement to include such a technology in a model, but it is useful to do so, since in its absence,
an infeasible model would cause the solver to end with an error, returning no results for Calliope to analyze.

What remains to set up is a simple transmission technology:

ac_transmission:
name: 'AC power transmission'
parent: transmission
carrier: power
constraints:

e_eff: 0.85
costs:

monetary:
e_cap: 200
om_var: 0.002

ac_transmission has an efficiency of 0.85, so a loss during transmission of 0.15, as well as some cost definitions.

Transmission technologies (like conversion technologies) look different than other nodes, as they link the carrier at
one location to the carrier at another (or, in the case of conversion, one carrier to another at the same location). The
following figure illustrates this for the example model’s transmission technology:

Fig. 1.6: A simple transmission node with an 𝑒𝑒𝑓𝑓 .

Locations

In order to translate the model requirements shown in this section’s introduction into a model definition, five locations
are used: r1, r2, csp1, csp2, and csp3.

16 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

The technologies are set up in these locations as follows:

Fig. 1.7: Locations and their technologies in the example model

Let’s now look at the first location definition:

locations:
region1:

techs: ['demand_power', 'unmet_demand_power', 'ccgt']
override:

demand_power:
x_map: 'region1: demand'
constraints:

r: file=demand-1.csv
r_scale_to_peak: -40000

ccgt:
constraints:

e_cap.max: 30000 # increased to ensure no unmet_demand in first
→˓timestep

1.4. Tutorials 17

Calliope Documentation, Release 0.5.0

There are several things to note here:

• The location specifies a list of technologies that it allows (techs). Note that technologies listed here must have
been defined elsewhere in the model configuration.

• It also overrides some options for both demand_power and ccgt. For the latter, it simply sets a location-
specific maximum capacity constraint. For demand_power, the options set here are related to reading the
demand time series from a CSV file. CSV is a simple text-based format that stores tables by comma-separated
rows. Note that we did not define any r option in the definition of the demand_power technology. Instead,
this is done directly via a location-specific override. For this location, the file demand-1.csv is loaded, and
the demand is then scaled such that the demand peak is at the given value. Note that in Calliope, a supply is
positive and a demand is negative, so the peak demand is actually a negative value. Finally, the x_map option
allows us to read a CSV file with a single column named “demand” and tell Calliope to load data from that
column for region r1. This is necessary unless the column name(s) in the CSV file already correspond to the
location names defined in the model configuration.

The remaining location definitions look like this:

region2:
techs: ['demand_power', 'unmet_demand_power', 'battery']
override:

demand_power:
x_map: 'region2: demand'
constraints:

r: file=demand-2.csv
r_scale_to_peak: -5000

region1-1,region1-2,region1-3:
within: region1
techs: ['csp']

r2 is very similar to r1, except that it does not allow the ccgt technology. The three csp locations are defined
together, i.e. they each get the exact same configuration. They are within the location r1 and allow only the csp
technology, this allows us to model three possible sites for CSP plants within r1.

Locations that do not specify a within are implicitly at the topmost level. Transmission between locations at the
topmost level can only take place if transmission links are defined between them. On the other hand, locations which
are specified as within another location can automatically and without any losses transmit energy to and from their
parent location. In other words, a topmost location and all its contained locations together are implicitly assumed to
be on a “copperplate” together. That means there are no transmission constraints and no transmission losses between
these locations. Balancing of supply and demand takes place only at the topmost level.

For transmission technologies, the model also needs to know which top-level locations can be linked, and this is set
up in the model configuration as follows:

links:
region1,region2:

ac_transmission:
constraints:

e_cap.max: 10000

Tutorial 2: urban scale

This example consists of two possible sources of electricity, one possible source of heat, and one possible source
of simultaneous heat and electricity. There are three locations, each describing a building, with transmission links
between them. The diagram below gives an overview:

18 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Fig. 1.8: Overview of the built-in urban-scale example model

Supply technologies

This example model defines three supply technologies.

The first two are national_gas and national_grid, referring to the supply of gas (natural gas) and power
(electricity), respectively, from the national distribution system. These ‘inifinitely’ available national commodities can
become energy carriers in the system, with the cost of their purchase being considered at supply, not conversion.

The definition of these technologies in the example model’s configuration looks as follows:

##-GRID SUPPLY-##

supply_grid_power:
name: 'National grid import'
parent: supply
carrier: power
constraints:

r: inf
e_cap.max: 2000

costs:
monetary:

e_cap: 15
om_fuel: 0.1 # 10p/kWh electricity price #ppt

supply_gas:
name: 'Natural gas import'
parent: supply
carrier: gas
constraints:

1.4. Tutorials 19

Calliope Documentation, Release 0.5.0

Fig. 1.9: The layout of a simple node, in this case boiler, which has one carrier input, one carrier output, a carrier
conversion efficiency (𝑒𝑒𝑓𝑓), and a constraint on its maximum built 𝑒𝑐𝑎𝑝 (which puts an upper limit on 𝑒𝑝𝑟𝑜𝑑).

r: inf
e_cap.max: 2000

costs:
monetary:

e_cap: 1
om_fuel: 0.025 # 2.5p/kWh gas price #ppt

The final supply technology is pv (solar photovoltaic power), which serves as a inflexible supply technology. It
is simple to define, other than having a time-dependant resource availablity, loaded from file. Additionally, it is
constrained by available area, which is the rooftop area of the locations in this example.

The definition of this technology in the example model’s configuration looks as follows:

##-Renewables-##

pv:
name: 'Solar photovoltaic power'
color: '#99CB48'
stack_weight: 100
parent: supply
export: true
carrier_out: power
constraints:

r: file # Will look for `pv_r.csv` in data directory - already accounted
→˓for panel efficiency

e_eff: 0.85
e_cap.max: 250
r_area.max: 1500

costs:
monetary:

e_cap: 1350

Conversion technologies

The example model defines two conversion technologies.

20 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

The first is boiler (natural gas boiler), which serves as an example of a simple conversion technology with one
input carrier and one output carrier. Its only constraints are the cost of built capacity (e_cap) and a constraint on its
maximum built capacity.

Fig. 1.10: The layout of a simple node, in this case boiler, which has one carrier input, one carrier output, a carrier
conversion efficiency (𝑒𝑒𝑓𝑓), and a constraint on its maximum built 𝑒𝑐𝑎𝑝 (which puts an upper limit on 𝑒𝑝𝑟𝑜𝑑).

The definition of this technology in the example model’s configuration looks as follows:

Conversion

boiler:
name: 'Natural gas boiler'
stack_weight: 100
parent: conversion
carrier_out: heat
carrier_in: gas
constraints:

e_cap.max: 600
e_eff: 0.85

There are a few things to note. First, boiler defines a name, a color (given as an HTML color code), and a
stack_weight. These are used by the built-in analysis tools when analyzing model results. Second, it specifies its
parent, conversion, its carrier_in gas, and its carrier_out heat, thus setting itself up as a gasto heat conversion
technology. This is followed by the definition of constraints and costs (the only cost class used is monetary, but this is
where other “costs”, such as emissions, could be defined).

The second technology is chp (combined heat and power), and serves as an example of a possible conversion_plus
technology making use of two output carriers.

This definition in the example model’s configuration is more verbose:

Conversion_plus

chp:
name: 'Combined heat and power'
stack_weight: 100
parent: conversion_plus
export: true
primary_carrier: power
carrier_in: gas

1.4. Tutorials 21

Calliope Documentation, Release 0.5.0

Fig. 1.11: The layout of a more complex node, in this case chp, which makes use of multiple output carriers.

carrier_out: power
carrier_out_2:

heat: 0.8
constraints:

e_cap.max: 1300
e_eff: 0.405

costs:
monetary:

e_cap: 750
om_var: 0.004 # .4p/kWh for 4500 operating hours/year

Again, chp has the definitions for name, color, stack_weight, parent, and carrier_in. Its constraints are no more
numerous: it still only defines a carrier conversion efficiency and maximum carrier conversion capacity.

Demand technologies

Electricity and heat demand, and their unmet_demand counterparts are defined here:

##-DEMAND-##

demand_power:
name: 'Electrical demand'
parent: demand
carrier: power

unmet_demand_power:
name: 'Unmet electrical demand'
parent: unmet_demand
carrier: power

demand_heat:
name: 'Heat demand'
parent: demand
carrier: heat

22 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

unmet_demand_heat:
name: 'Unmet heat demand'
parent: unmet_demand

Electricity and heat demand are a technologies like any other. We will associate an actual demand time series with each
demand technology later. The parent of unmet_demand_power and unmet_demand_heat, unmet_demand,
is a special kind of supply technology with an unlimited resource but very high cost. It allows a model to remain math-
ematically feasible even if insufficient supply is available to meet demand, and model results can easily be examined
to verify whether there was any unmet demand. There is no requirement to include such a technology in a model, but
it is useful to do so, since in its absence, an infeasible model would cause the solver to end with an error, returning no
results for Calliope to analyze.

Transmission technologies

In this district, electricity and heat can be transmitted between two locations. Gas is made available in each location
without consideration of transmission.

Fig. 1.12: A simple transmission node with an 𝑒𝑒𝑓𝑓 .

##-DISTRIBUTION-##

power_lines:
name: 'Electrical power distribution'
parent: transmission
carrier: power
constraints:

e_cap.max: 2000
e_eff: 0.98

costs_per_distance:
monetary:

e_cap: 0.01

heat_pipes:
name: 'District heat distribution'
parent: transmission
carrier: heat
constraints:

e_cap.max: 2000

1.4. Tutorials 23

Calliope Documentation, Release 0.5.0

constraints_per_distance:
e_loss: 0.025

costs_per_distance:
monetary:

power_lines has an efficiency of 0.95, so a loss during transmission of 0.05. heat_pipes has a loss rate per
unit distance of 2.5%/km. Over the distance between the two locations of 0.5km, this translates to 1.25% loss rate.

Locations

In order to translate the model requirements shown in this section’s introduction into a model definition, four locations
are used: X1, X2, X3, and N1.

The technologies are set up in these locations as follows:

Fig. 1.13: Locations and their technologies in the urban-scale example model

Let’s now look at the first location definition:

locations:
X1:

24 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

techs: ['chp', 'pv',
'supply_grid_power', 'supply_gas',
'demand_power', 'demand_heat',
'unmet_demand_power', 'unmet_demand_heat']
available_area: 500
override:

demand_power.constraints.r: file=demand_power.csv
demand_heat.constraints.r: file=demand_heat.csv
supply_grid_power.costs.monetary.e_cap: 100 # cost of transformers

There are several things to note here:

• The location specifies a list of technologies that it allows (techs). Note that technologies listed here must have
been defined elsewhere in the model configuration.

• It also overrides some options for demand_power and ccgt. For the latter, it simply sets a location-specific
maximum capacity constraint. For demand_power, the options set here are related to reading the demand
time series from a CSV file. CSV is a simple text-based format that stores tables by comma-separated rows.
Note that we did not define any r option in the definition of the demand_power technology. Instead, this
is done directly via a location-specific override. For this location, the file demand-1.csv is loaded, and the
demand is then scaled such that the demand peak is at the given value. Note that in Calliope, a supply is positive
and a demand is negative, so the peak demand is actually a negative value. Finally, the x_map option allows
us to read a CSV file with a single column named “demand” and tell Calliope to load data from that column
for region r1. This is necessary unless the column name(s) in the CSV file already correspond to the location
names defined in the model configuration.

The remaining location definitions look like this:

X2:
techs: ['boiler', 'pv',
'supply_gas',
'demand_power', 'demand_heat',
'unmet_demand_power', 'unmet_demand_heat'
]
available_area: 1300
override:

demand_power.constraints.r: file=demand_power.csv
demand_heat.constraints.r: file=demand_heat.csv
boiler.costs.monetary.e_cap: 43.1 # different boiler costs
pv.costs.monetary:

om_var: -0.0203 # revenue for just producing electricity
export: -0.0491 # FIT return for PV export

X3:
techs: ['boiler', 'pv',
'supply_gas',
'demand_power', 'demand_heat',
'unmet_demand_power', 'unmet_demand_heat'
]
available_area: 900
override:

demand_power.constraints.r: file=demand_power.csv
demand_heat.constraints.r: file=demand_heat.csv
boiler.costs.monetary.e_cap: 78 # different boiler costs
pv:

constraints:
e_cap.max: 50 # changing tariff structure below 50kW

costs.monetary:

1.4. Tutorials 25

Calliope Documentation, Release 0.5.0

om_fixed: -80.5 # reimbursement per kWp from FIT

N1: # location for branching heat transmission network
techs: ['heat_pipes']

X2 and X3 are very similar to X1, except that they do not connect to the national grid, nor do they contain the chp
technology.

N1 differs to the others by virtue of containing no technologies. It acts as a branching station for the heat network,
allowing connections to one or both of X2 and X3 without double counting the pipeline from X1 to N1. Its definition
look like this:

N1: # location for branching heat transmission network
techs: ['heat_pipes']

For transmission technologies, the model also needs to know which top-level locations can be linked, and this is set
up in the model configuration as follows:

links:
X1,X2:

power_lines:
distance: 0.5

X1,X3:
power_lines:

distance: 0.6
X1,N1:

heat_pipes:
distance: 0.25

N1,X2:
heat_pipes:

distance: 0.25
N1,X3:

heat_pipes:
distance: 0.35

Revenue by export

Defined for both PV and CHP, there is the option to accrue revenue in the system by exporting electricity. This export
is considered as a removal of the energy carrier power from the system, in exchange for negative cost (i.e. revenue).
To allow this, export: true has been given under both technology definitions and an export value given under
costs.

The revenue from PV export varies depending on location, emulating the different feed-in tariff structures in the UK for
commercial and domestic properties. In domestic properties, the revenue is generated by simply having the installation
(per kW installed capacity), as export is not metered. Export is metered in commercial properties, thus revenue
is generated directly from export (per kWh exported). The revenue generated by CHP depends on the electricity
grid wholesale price per kWh, being 80% of that. These revenue possibilities are reflected in the technologies’ and
locations’ definitions.

Files that define the model

For all Calliope models, including the examples discussed above, the model definitions in through YAML files, which
are simple human-readable text files (YAML is a human readable data serialization format). They are stored with a
.yaml (or .yml) extension. See YAML configuration file format for details.

26 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Typically, we want to collect all files belonging to a model inside a model directory. In the national-scale example
describe above, the layout of that directory, which also includes the time series data in CSV format, is as follows (+
denotes directories, - files):

+ example_model
+ model_config

+ data
- csp_r.csv
- demand-1.csv
- demand-2.csv
- set_t.csv

- locations.yaml
- model.yaml
- techs.yaml

- run.yaml

The urban-scale example follows a similar layout. A complete listing of the files in all example models is available in
Built-in example models.

Inside the data directory, time series are stored as CSV files (their location is configured inside model.yaml). At
a minimum, a model must always have a set_t.csv file which defines the model’s timesteps. For more details on
this and on time series data more generally, refer to Using time series data.

The three files locations.yaml, model.yaml, and techs.yaml together are the model definition, and have
been described above. There is one more YAML file, however: run.yaml. This tells Calliope how to run the model
given by the model definition, and will be described next. To run a model in Calliope, these two basic components – a
model definition and a run configuration – are always required.

The run configuration

At its most basic, the run configuration simply specifies which model to run, which mode to run it in, and what solver
to use. These three options are the required minimum. In the case of the example models, we also specify some output
options. The output options only apply when the calliope run command-line tool is used to run the model (see
below). In the national-scale example:

name: "Test run" # Run name -- distinct from model name!

model: 'model_config/model.yaml'

output: # Only used if run via the 'calliope run' command-line tool
format: csv # Choices: netcdf, csv
path: 'Output' # Will be created if it doesn't exist

mode: plan # Choices: plan, operate

solver: glpk

To speed up model runs, the national-scale example model’s run configuration also specifies a time subset:

subset_t: ['2005-01-01', '2005-01-05'] # Subset of timesteps

The included time series is hourly for a full year. The subset_t setting runs the model over only a subset of five
days.

The full run.yaml file includes additional options, none of which are relevant for this tutorial. See the full file listing
for the national-scale example and the section on the run configuration for more details on the available options.

1.4. Tutorials 27

Calliope Documentation, Release 0.5.0

Plan vs. operate

A Calliope model can either be run in planning mode (mode: plan) or operational mode (mode: operate).
In planning mode, an optimization problem is solved to design an energy system that satisfies the given constraints.

In operational mode, all max constraints (such as e_cap.max) are treated as fixed rather than as upper bounds.
The resulting, fully defined energy system is then operated with a receding horizon control approach. The results are
returned in exactly the same format as for planning mode results.

To specify a runnable operational model, capacities for all technologies at all locations would have to be defined. This
can be done by specifying e_cap.equals. In the absence of e_cap.equals, e_cap.max is assumed to be
fixed.

In this tutorial section, we are only demonstrating the planning mode.

Running a model and analyzing results

Running interactively

The most straightforward way to run a Calliope model is to do so in an interactive Python session.

An example which also demonstrates some of the analysis possibilities after running a model is given in the following
Jupyter notebook, based on the national-scale example model. Note that you can download and run this notebook on
your own machine (if both Calliope and the Jupyter Notebook are installed):

Calliope interactive national-scale example notebook

Running with the command-line tool

Another way to run a Calliope model is to use the command-line tool calliope run. First, we create a new copy
of the built-in national-scale example model, by using calliope new:

$ calliope new testmodel

Note: By default, calliope new uses the national-scale example model as a template. To use a different template,
you can specify the example model to use, e.g.: --template=UrbanScale.

This creates a new directory, testmodel, in the current working directory. We can now run this model:

$ calliope run testmodel/run.yaml

Because of the output options set in run.yaml, model results will be stored as a set of CSV files in the directory
Output. Saving CSV files is an easy way to get results in a format suitable for further processing with other tools. In
order to make use of Calliope’s analysis functionality, results should be saved as a single NetCDF file instead, which
comes with improved performance and handling.

See Running the model for more on how to run a model and then retrieve results from it. See Analyzing results for
more details on analyzing results, including the built-in functionality to read results from either CSV or NetCDF files,
making them available for further analysis as described above (Running interactively).

28 Chapter 1. User guide

https://nbviewer.ipython.org/url/calliope.readthedocs.io/en/v0.5.0/_static/notebooks/tutorial.ipynb

Calliope Documentation, Release 0.5.0

Model formulation

This section details the mathematical formulation of the different components. For each component, a link to the
actual implementing function in the Calliope code is given.

Time-varying vs. constant model parameters

Some model parameters which are defined over the set of time steps t can either given as time series or as constant
values. If given as constant values, the same value is used for each time step t. For details on how to define a parameter
as time-varying and how to load time series data into it, see the time series description in the model configuration
section.

Decision variables

Capacity

• s_cap(y, x): installed storage capacity. Supply plus/Storage only

• r_cap(y, x): installed resource <-> storage conversion capacity

• e_cap(y, x): installed storage <-> grid conversion capacity (gross)

• r2_cap(y, x): installed secondary resource conversion capacity

• r_area(y, x): resource collector area

Unit Commitment

• r(y, x, t): resource <-> storage/carrier_in (+ production, - consumption)

• r2(y, x, t): secondary resource -> storage (+ production)

• c_prod(c, y, x, t): resource/storage/carrier_in -> carrier_out (+ production)

• c_con(c, y, x, t): resource/storage/carrier_in <- carrier_out (- consumption)

• s(y, x, t): total energy stored in device

• export(y, x, t): carrier_out -> export

Costs

• cost(y, x, k): total costs

• cost_fixed(y, x, k): fixed operation costs

• cost_var(y, x, k, t): variable operation costs

Objective function (cost minimization)

Provided by: calliope.constraints.objective.objective_cost_minimization()

The default objective function minimizes cost:

𝑚𝑖𝑛 : 𝑧 =
∑︁
𝑦

(𝑤𝑒𝑖𝑔ℎ𝑡(𝑦)×
∑︁
𝑥

𝑐𝑜𝑠𝑡(𝑦, 𝑥, 𝑘 = 𝑘𝑚))

1.5. Model formulation 29

Calliope Documentation, Release 0.5.0

where 𝑘𝑚 is the monetary cost class.

Alternative objective functions can be used by setting the objective in the model configuration (see Model-wide
settings).

weight(y) is 1 by default, but can be adjusted to change the relative weighting of costs of different technologies in the
objective, by setting weight on any technology (see Technology).

Basic constraints

Node resource

Provided by: calliope.constraints.base.node_resource()

Defines constraint c_r_available:

𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡) = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑦, 𝑥, 𝑡)× 𝑟𝑠𝑐𝑎𝑙𝑒(𝑦, 𝑥)× 𝑟𝑎𝑟𝑒𝑎(𝑦, 𝑥)

Which limits the resource flow to supply and supply_plus technologies, or from demand technologies.

For supply:

If the option constraints.force_r is set to true, then

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡)

𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)
= 𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡)

If that option is not set:

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡)

𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)
≤ 𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡)

For demand:

If the option constraints.force_r is set to true, then

𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡)× 𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) = 𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡)

If that option is not set:

𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡)× 𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) ≥ 𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡)

For supply_plus:

If the option constraints.force_r is set to true, then

𝑟(𝑦, 𝑥, 𝑡) = 𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡)× 𝑟𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)

If that option is not set:

𝑟(𝑦, 𝑥, 𝑡) ≤ 𝑟𝑎𝑣𝑎𝑖𝑙(𝑦, 𝑥, 𝑡)× 𝑟𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)

Note: For all other technology types, defining a resource is irrelevant, so they are not constrained here.

30 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Node energy balance

Provided by: calliope.constraints.base.node_energy_balance()

Defines nine constraints, which are discussed in turn:

• c_balance_transmission: energy balance for transmission technologies

• c_balance_conversion: energy balance for conversion technologies

• c_balance_conversion_plus: energy balance for conversion_plus technologies

• c_balance_conversion_plus_secondary_out: energy balance for conversion_plus technolo-
gies which have a secondary output carriers

• c_balance_conversion_plus_tertiary_out: energy balance for conversion_plus technolo-
gies which have a tertiary output carriers

• c_balance_conversion_plus_secondary_in: energy balance for conversion_plus technolo-
gies which have a secondary input carriers

• c_balance_conversion_plus_tertiary_in: energy balance for conversion_plus technolo-
gies which have a tertiary input carriers

• c_balance_supply_plus: energy balance for supply_plus technologies

• c_balance_storage: energy balance for storage technologies

Transmission balance

Transmission technologies are internally expanded into two technologies per transmission link, of the form
technology_name:destination.

For example, if the technology hvdc is defined and connects region_1 to region_2, the framework will inter-
nally create a technology called hvdc:region_2 which exists in region_1 to connect it to region_2, and a
technology called hvdc:region_1 which exists in region_2 to connect it to region_1.

The balancing for transmission technologies is given by

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) = −1× 𝑐𝑐𝑜𝑛(𝑐, 𝑦𝑟𝑒𝑚𝑜𝑡𝑒, 𝑥𝑟𝑒𝑚𝑜𝑡𝑒, 𝑡)× 𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)× 𝑒𝑒𝑓𝑓,𝑝𝑒𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦, 𝑥)

Here, 𝑥𝑟𝑒𝑚𝑜𝑡𝑒, 𝑦𝑟𝑒𝑚𝑜𝑡𝑒 are x and y at the remote end of the transmission technology. For example, for (y, x) =
('hvdc:region_2', 'region_1'), the remotes would be ('hvdc:region_1', 'region_2').

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) for c='power', y='hvdc:region_2', x='region_1' would be the import of power from
region_2 to region_1, via a hvdc connection, at time t.

This also shows that transmission technologies can have both a static or time-dependent efficiency (line loss),
𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡), and a distance-dependent efficiency, 𝑒𝑒𝑓𝑓,𝑝𝑒𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦, 𝑥).

For more detail on distance-dependent configuration see Model configuration.

Conversion balance

The conversion balance is given by

𝑐𝑝𝑟𝑜𝑑(𝑐𝑜𝑢𝑡, 𝑦, 𝑥, 𝑡) = −1× 𝑐𝑐𝑜𝑛(𝑐𝑖𝑛, 𝑦, 𝑥, 𝑡)× 𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)

The principle is similar to that of the transmission balance. The production of carrier 𝑐𝑜𝑢𝑡 (the carrier_out option
set for the conversion technology) is driven by the consumption of carrier 𝑐𝑖𝑛 (the carrier_in option set for the
conversion technology).

1.5. Model formulation 31

Calliope Documentation, Release 0.5.0

Conversion_plus balance

Conversion plus technologies can have several carriers in and several carriers out, leading to a more complex produc-
tion/consumption balance.

For the primary carrier(s), the balance is:∑︁
𝑐𝑜𝑢𝑡1

𝑐𝑝𝑟𝑜𝑑(𝑐𝑜𝑢𝑡1 , 𝑦, 𝑥, 𝑡)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑜𝑢𝑡1)
= −1×

∑︁
𝑐𝑖𝑛1

𝑐𝑐𝑜𝑛(𝑐𝑖𝑛1
, 𝑦, 𝑥, 𝑡)× 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑖𝑛1

)× 𝑒𝑒𝑓𝑓 (𝑥, 𝑦, 𝑡)

Where c_{out_1} and c_{in_1} are the sets of primary production and consumption carriers, respectively and
carrier_{fraction} is the relative contribution of these carriers, as defined in ??.

The remaining constraints (c_balance_conversion_plus_secondary_out,
c_balance_conversion_plus_tertiary_out, c_balance_conversion_plus_secondary_in,
c_balance_conversion_plus_tertiary_in) link the input/output of the technology secondary and
tertiary carriers to the primary consumption/production.

For production:∑︁
𝑐𝑜𝑢𝑡1

𝑐𝑝𝑟𝑜𝑑
(𝑐𝑜𝑢𝑡1 ,𝑦,𝑥,𝑡)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑜𝑢𝑡1
)

×𝑚𝑖𝑛(𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑜𝑢𝑡𝑥)) =
∑︁
𝑐𝑜𝑢𝑡𝑥

𝑐𝑝𝑟𝑜𝑑(𝑐𝑜𝑢𝑡𝑥 , 𝑦, 𝑥, 𝑡)×
𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑜𝑢𝑡𝑥)

𝑚𝑖𝑛(𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑜𝑢𝑡𝑥))

For consumption:∑︁
𝑐𝑖𝑛1

𝑐𝑐𝑜𝑛(𝑐𝑖𝑛1
, 𝑦, 𝑥, 𝑡)

𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑖𝑛1)
×𝑚𝑖𝑛(𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑖𝑛𝑥

)) =
∑︁
𝑐𝑖𝑛𝑥

𝑐𝑐𝑜𝑛(𝑐𝑖𝑛𝑥
, 𝑦, 𝑥, 𝑡)× 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑖𝑛𝑥

)

𝑚𝑖𝑛(𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑐𝑖𝑛𝑥))

Where x is either 2 (secondary carriers) or 3 (tertiary carriers).

Supply_plus balance

Supply_plus technologies are supply technologies with more control over resource flow. You can have multiple
resources, a resource capacity, and storage of resource before it is converted to the primary carrier_out.

If storage is possible:

𝑠(𝑦, 𝑥, 𝑡) = 𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 + 𝑟(𝑦, 𝑥, 𝑡) + 𝑟2(𝑦, 𝑥, 𝑡)− 𝑐𝑝𝑟𝑜𝑑

Otherwise:

𝑟(𝑦, 𝑥, 𝑡) = 𝑐𝑝𝑟𝑜𝑑 − 𝑟2

Where:

𝑐𝑝𝑟𝑜𝑑 is defined as 𝑐𝑝𝑟𝑜𝑑(𝑐,𝑦,𝑥,𝑡)
𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓

.

𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) is defined as 𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) + 𝑝𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡), the plant efficiency including parasitic losses

𝑟2(𝑦, 𝑥, 𝑡) is the secondary resource and is always set to zero unless the technology explicitly defines a secondary
resource.

𝑠(𝑦, 𝑥, 𝑡) is the storage level at time 𝑡.

𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 describes the state of storage at the previous timestep. 𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 = 𝑠𝑖𝑛𝑖𝑡(𝑦, 𝑥) at time 𝑡 = 0. Else,

𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 = (1− 𝑠𝑙𝑜𝑠𝑠)× 𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡− 1)× 𝑠(𝑦, 𝑥, 𝑡− 1)

Note: In operation mode, s_init is carried over from the previous optimization period.

32 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Storage balance

Storage technologies balance energy charge, energy discharge, and energy stored:

𝑠(𝑦, 𝑥, 𝑡) = 𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 − 𝑐𝑝𝑟𝑜𝑑 − 𝑐𝑐𝑜𝑛

Where:

𝑐𝑝𝑟𝑜𝑑 is defined as 𝑐𝑝𝑟𝑜𝑑(𝑐,𝑦,𝑥,𝑡)
𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓

if 𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓 > 0, otherwise 𝑐𝑝𝑟𝑜𝑑 = 0

𝑐𝑐𝑜𝑛 is defined as 𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡)× 𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓

𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) is defined as 𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) + 𝑝𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡), the plant efficiency including parasitic losses

𝑠(𝑦, 𝑥, 𝑡) is the storage level at time 𝑡.

𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 describes the state of storage at the previous timestep. 𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 = 𝑠𝑖𝑛𝑖𝑡(𝑦, 𝑥) at time 𝑡 = 0. Else,

𝑠𝑚𝑖𝑛𝑢𝑠𝑜𝑛𝑒 = (1− 𝑠𝑙𝑜𝑠𝑠)× 𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡− 1)× 𝑠(𝑦, 𝑥, 𝑡− 1)

Note: In operation mode, s_init is carried over from the previous optimization period.

Node build constraints

Provided by: calliope.constraints.base.node_constraints_build()

Built capacity is managed by six constraints.

c_s_cap

This constrains the built storage capacity by:

𝑠𝑐𝑎𝑝(𝑦, 𝑥) ≤ 𝑠𝑐𝑎𝑝,𝑚𝑎𝑥(𝑦, 𝑥)

If y.constraints.s_cap.equals is set for location x or the model is running in operational mode, the in-
equality in the equation above is turned into an equality constraint.

If both 𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑦, 𝑥) and 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑎𝑡𝑒 are not given, 𝑠𝑐𝑎𝑝(𝑦, 𝑥) is automatically set to zero.

If y.constraints.s_time.max is true at location x, then y.constraints.s_time.max and y.
constraints.e_cap.max are used to to compute s_cap.max. The minimum value of s_cap.max is taken,
based on analysis of all possible time sets which meet the s_time.max value. This allows time-varying efficiency,
𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡) to be accounted for.

c_r_cap

This constrains the built resource conversion capacity by:

𝑟𝑐𝑎𝑝(𝑦, 𝑥) ≤ 𝑟𝑐𝑎𝑝,𝑚𝑎𝑥(𝑦, 𝑥)

If the model is running in operational mode, the inequality in the equation above is turned into an equality constraint.

1.5. Model formulation 33

Calliope Documentation, Release 0.5.0

c_r_area

This constrains the resource conversion area by:

𝑟𝑎𝑟𝑒𝑎(𝑦, 𝑥) ≤ 𝑟𝑎𝑟𝑒𝑎,𝑚𝑎𝑥(𝑦, 𝑥)

By default, y.constraints.r_area.max is set to false, and in that case, 𝑟𝑎𝑟𝑒𝑎(𝑦, 𝑥) is forced to 1.0. If the model
is running in operational mode, the inequality in the equation above is turned into an equality constraint. Finally, if
y.constraints.r_area_per_e_cap is given, then the equation 𝑟𝑎𝑟𝑒𝑎(𝑦, 𝑥) = 𝑒𝑐𝑎𝑝(𝑦, 𝑥) * 𝑟_𝑎𝑟𝑒𝑎_𝑝𝑒𝑟_𝑐𝑎𝑝
applies instead.

c_e_cap

This constrains the carrier conversion capacity by:

𝑒𝑐𝑎𝑝(𝑦, 𝑥) ≤ 𝑒𝑐𝑎𝑝,𝑚𝑎𝑥(𝑦, 𝑥)× 𝑒_𝑐𝑎𝑝_𝑠𝑐𝑎𝑙𝑒

If a technology y is not allowed at a location x, 𝑒𝑐𝑎𝑝(𝑦, 𝑥) = 0 is forced.

y.constraints.e_cap_scale defaults to 1.0 but can be set on a per-technology, per-location basis if necessary.

If y.constraints.e_cap.equals is set for location x or the model is running in operational mode, the in-
equality in the equation above is turned into an equality constraint.

c_e_cap_storage

This constrains the carrier conversion capacity for storage technologies by:

𝑒𝑐𝑎𝑝(𝑦, 𝑥) ≤ 𝑒𝑐𝑎𝑝,𝑚𝑎𝑥

Where 𝑒𝑐𝑎𝑝,𝑚𝑎𝑥 = 𝑠𝑐𝑎𝑝(𝑦, 𝑥) * 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑎𝑡𝑒 * 𝑒_𝑐𝑎𝑝_𝑠𝑐𝑎𝑙𝑒

y.constraints.e_cap_scale defaults to 1.0 but can be set on a per-technology, per-location basis if necessary.

c_r2_cap

This manages the secondary resource conversion capacity by:

𝑟2𝑐𝑎𝑝(𝑦, 𝑥) ≤ 𝑟2𝑐𝑎𝑝,𝑚𝑎𝑥(𝑦, 𝑥)

If y.constraints.r2_cap.equals is set for location x or the model is running in operational mode, the
inequality in the equation above is turned into an equality constraint.

There is an additional relevant option, y.constraints.r2_cap_follows, which can be overridden on a per-
location basis. It can be set either to r_cap or e_cap, and if set, sets c_r2_cap to track one of these, ie,
𝑟2𝑐𝑎𝑝,𝑚𝑎𝑥 = 𝑟𝑐𝑎𝑝(𝑦, 𝑥) (analogously for e_cap), and also turns the constraint into an equality constraint.

Node operational constraints

Provided by: calliope.constraints.base.node_constraints_operational()

This component ensures that nodes remain within their operational limits, by constraining r, c_prod, c_con, s,
r2, and export.

34 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

r

𝑟(𝑦, 𝑥, 𝑡) is constrained to remain within 𝑟𝑐𝑎𝑝(𝑦, 𝑥), with the constraint c_r_max_upper:

𝑟(𝑦, 𝑥, 𝑡) ≤ 𝑡𝑖𝑚𝑒_𝑟𝑒𝑠(𝑡)× 𝑟𝑐𝑎𝑝(𝑦, 𝑥)

c_prod

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) is constrained by c_prod_max and c_prod_min:

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) ≤ 𝑡𝑖𝑚𝑒_𝑟𝑒𝑠(𝑡)× 𝑒𝑐𝑎𝑝(𝑦, 𝑥)× 𝑝𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)

if c is the carrier_out of y, else 𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑦) = 0.

If e_cap_min_use is defined, the minimum output is constrained by:

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) ≥ 𝑡𝑖𝑚𝑒_𝑟𝑒𝑠(𝑡)× 𝑒𝑐𝑎𝑝(𝑦, 𝑥)× 𝑒𝑐𝑎𝑝,𝑚𝑖𝑛𝑢𝑠𝑒 × 𝑝𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡)

These contraints are skipped for conversion_plus technologies if c is not the primary carrier.

c_con

For technologies which are not supply or supply_plus, 𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡) is non-zero. Thus 𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡) is
constrainted by c_con_max:

𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡) ≥ −1× 𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)× 𝑒𝑐𝑎𝑝(𝑦, 𝑥)

and 𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡) = 0 otherwise.

This constraint is skipped for a conversion_plus and conversion technologies If c is a possible consumption
carrier (primary, secondary, or tertiary).

s

The constraint c_s_max ensures that storage cannot exceed its maximum size by

𝑠(𝑦, 𝑥, 𝑡) ≤ 𝑠𝑐𝑎𝑝(𝑦, 𝑥)

r2

c_r2_max constrains the secondary resource by

𝑟2(𝑦, 𝑥, 𝑡) ≤ 𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)× 𝑟2𝑐𝑎𝑝(𝑦, 𝑥)

There is an additional check if y.constraints.r2_startup_only is true. In this case, 𝑟2(𝑦, 𝑥, 𝑡) = 0 unless
the current timestep is still within the startup time set in the startup_time_bounds model-wide setting. This can
be useful to prevent undesired edge effects from occurring in the model.

export

c_export_max constrains the export of a produced carrier by

𝑒𝑥𝑝𝑜𝑟𝑡(𝑦, 𝑥, 𝑡) ≤ 𝑒𝑥𝑝𝑜𝑟𝑡𝑐𝑎𝑝(𝑦, 𝑥)

1.5. Model formulation 35

Calliope Documentation, Release 0.5.0

Transmission constraints

Provided by: calliope.constraints.base.node_constraints_transmission()

This component provides a single constraint, c_transmission_capacity, which forces 𝑒𝑐𝑎𝑝 to be symmetric
for transmission nodes. For example, for for a given transmission line between 𝑥1 and 𝑥2, using the technology hvdc:

𝑒𝑐𝑎𝑝(ℎ𝑣𝑑𝑐 : 𝑥2, 𝑥1) = 𝑒𝑐𝑎𝑝(ℎ𝑣𝑑𝑐 : 𝑥1, 𝑥2)

Node costs

Provided by: calliope.constraints.base.node_costs()

These equations compute costs per node.

Weights are adjusted for individual timesteps depending on the timestep reduction methods applied (see Time resolu-
tion adjustment), and are given by 𝑊 (𝑡) when computing costs.

The depreciation rate for each cost class k is calculated as

𝑑(𝑦, 𝑘) =
1

𝑝𝑙𝑎𝑛𝑡_𝑙𝑖𝑓𝑒(𝑦)

if the interest rate 𝑖 is 0, else

𝑑(𝑦, 𝑘) =
𝑖× (1 + 𝑖(𝑦, 𝑘))𝑝𝑙𝑎𝑛𝑡_𝑙𝑖𝑓𝑒(𝑘)

(1 + 𝑖(𝑦, 𝑘))𝑝𝑙𝑎𝑛𝑡_𝑙𝑖𝑓𝑒(𝑘) − 1

Costs are split into fixed and variable costs. The total costs are computed in c_cost by

𝑐𝑜𝑠𝑡(𝑦, 𝑥, 𝑘) = 𝑐𝑜𝑠𝑡𝑓𝑖𝑥𝑒𝑑(𝑦, 𝑥, 𝑘) +
∑︁
𝑡

𝑐𝑜𝑠𝑡𝑣𝑎𝑟(𝑦, 𝑥, 𝑘, 𝑡)

The fixed costs include construction costs, annual operation and maintenance (O&M) costs, and O&M costs which
are a fraction of the construction costs. The total fixed costs are computed in c_cost_fixed by

𝑐𝑜𝑠𝑡𝑓𝑖𝑥𝑒𝑑(𝑦, 𝑥, 𝑘) = 𝑐𝑜𝑠𝑡𝑐𝑜𝑛 + 𝑐𝑜𝑠𝑡𝑜𝑚,𝑓𝑟𝑎𝑐 × 𝑐𝑜𝑠𝑡𝑐𝑜𝑛 + 𝑐𝑜𝑠𝑡𝑜𝑚,𝑓𝑖𝑥𝑒𝑑 × 𝑒𝑐𝑎𝑝(𝑦, 𝑥)×

∑︀
𝑡
𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)×𝑊 (𝑡)

8760

Where

𝑐𝑜𝑠𝑡𝑐𝑜𝑛 = 𝑑(𝑦, 𝑘)×

∑︀
𝑡
𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)×𝑊 (𝑡)

8760
× (𝑐𝑜𝑠𝑡𝑠_𝑐𝑎𝑝(𝑦, 𝑘)× 𝑠𝑐𝑎𝑝(𝑦, 𝑥)

+ 𝑐𝑜𝑠𝑡𝑟_𝑐𝑎𝑝(𝑦, 𝑘)× 𝑟𝑐𝑎𝑝(𝑦, 𝑥)

+ 𝑐𝑜𝑠𝑡𝑟_𝑎𝑟𝑒𝑎(𝑦, 𝑘)× 𝑟𝑎𝑟𝑒𝑎(𝑦, 𝑥)

+ 𝑐𝑜𝑠𝑡𝑒_𝑐𝑎𝑝(𝑦, 𝑘)× 𝑒𝑐𝑎𝑝(𝑦, 𝑥))

+ 𝑐𝑜𝑠𝑡𝑟2_𝑐𝑎𝑝(𝑦, 𝑘)× 𝑟2𝑐𝑎𝑝(𝑦, 𝑥))

The costs are as defined in the model definition, e.g. 𝑐𝑜𝑠𝑡𝑟_𝑐𝑎𝑝(𝑦, 𝑘) corresponds to y.costs.k.r_cap.

For transmission technologies, 𝑐𝑜𝑠𝑡𝑒_𝑐𝑎𝑝(𝑦, 𝑘) is computed differently, to include the per-distance costs:

𝑐𝑜𝑠𝑡𝑒_𝑐𝑎𝑝,𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑦, 𝑘) =
𝑐𝑜𝑠𝑡𝑒_𝑐𝑎𝑝(𝑦, 𝑘) + 𝑐𝑜𝑠𝑡𝑒_𝑐𝑎𝑝,𝑝𝑒𝑟𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦, 𝑘)

2

This implies that for transmission technologies, the cost of construction is split equally across the two locations con-
nected by the technology.

36 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

The variable costs are O&M costs applied at each time step:

𝑐𝑜𝑠𝑡𝑣𝑎𝑟 = 𝑐𝑜𝑠𝑡𝑜𝑝,𝑣𝑎𝑟 + 𝑐𝑜𝑠𝑡𝑜𝑝,𝑓𝑢𝑒𝑙 + 𝑐𝑜𝑠𝑡𝑜𝑝,𝑟2 + 𝑐𝑜𝑠𝑡𝑜𝑝,𝑒𝑥𝑝𝑜𝑟𝑡

Where:

𝑐𝑜𝑠𝑡𝑜𝑝,𝑣𝑎𝑟 = 𝑐𝑜𝑠𝑡𝑜𝑚_𝑣𝑎𝑟(𝑘, 𝑦, 𝑥, 𝑡)×
∑︁
𝑡

𝑊 (𝑡)× 𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡)

𝑐𝑜𝑠𝑡𝑜𝑝,𝑓𝑢𝑒𝑙 =
𝑐𝑜𝑠𝑡𝑜𝑚_𝑓𝑢𝑒𝑙(𝑘, 𝑦, 𝑥, 𝑡)×

∑︀
𝑡 𝑊 (𝑡)× 𝑟(𝑦, 𝑥, 𝑡)

𝑟𝑒𝑓𝑓 (𝑦, 𝑥)

𝑐𝑜𝑠𝑡𝑜𝑝,𝑟2 =
𝑐𝑜𝑠𝑡𝑜𝑚_𝑟2(𝑘, 𝑦, 𝑥, 𝑡)×

∑︀
𝑡 𝑊 (𝑡)× 𝑟2(𝑦, 𝑥, 𝑡)

𝑟2𝑒𝑓𝑓 (𝑦, 𝑥)

𝑐𝑜𝑠𝑡𝑜𝑝,𝑒𝑥𝑝𝑜𝑟𝑡 = 𝑐𝑜𝑠𝑡𝑒𝑥𝑝𝑜𝑟𝑡(𝑘, 𝑦, 𝑥, 𝑡)× 𝑒𝑥𝑝𝑜𝑟𝑡(𝑦, 𝑥, 𝑡)

If 𝑐𝑜𝑠𝑡𝑜𝑚_𝑓𝑢𝑒𝑙(𝑘, 𝑦, 𝑥, 𝑡) is given for a supply technology and 𝑒𝑒𝑓𝑓 (𝑦, 𝑥) > 0 for that technology, then:

𝑐𝑜𝑠𝑡𝑜𝑝,𝑓𝑢𝑒𝑙 = 𝑐𝑜𝑠𝑡𝑜𝑚_𝑓𝑢𝑒𝑙(𝑘, 𝑦, 𝑥, 𝑡)×
∑︁
𝑡

𝑊 (𝑡)× 𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡)

𝑒𝑒𝑓𝑓 (𝑦, 𝑥)

c is the technology primary carrier_out in all cases.

Model balancing constraints

Provided by: calliope.constraints.base.model_constraints()

Model-wide balancing constraints are constructed for nodes that have children:∑︁
𝑦,𝑥∈𝑋𝑖

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) +
∑︁

𝑦,𝑥∈𝑋𝑖

𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡) = 0 ∀𝑖, 𝑡

𝑖 are the level 0 locations, and 𝑋𝑖 is the set of level 1 locations (𝑥) within the given level 0 location, together with that
location itself.

There is also the need to ensure that technologies cannot export more energy than they produce:

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) ≥ 𝑒𝑥𝑝𝑜𝑟𝑡(𝑦, 𝑥, 𝑡)

Planning constraints

These constraints are loaded automatically, but only when running in planning mode.

System margin

Provided by: calliope.constraints.planning.system_margin()

This is a simplified capacity margin constraint, requiring the capacity to supply a given carrier in the time step with
the highest demand for that carrier to be above the demand in that timestep by at least the given fraction:∑︁

𝑦

∑︁
𝑥

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡𝑚𝑎𝑥,𝑐)× (1 +𝑚𝑐) ≤ 𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)×
∑︁
𝑦𝑐

∑︁
𝑥

(𝑒𝑐𝑎𝑝(𝑦, 𝑥)/𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡𝑚𝑎𝑥,𝑐))

where 𝑦𝑐 is the subset of y that delivers the carrier c and 𝑚𝑐 is the system margin for that carrier.

For each carrier (with the name carrier_name), Calliope attempts to read the model-wide option
system_margin.carrier_name, only applying this constraint if a setting exists.

1.5. Model formulation 37

Calliope Documentation, Release 0.5.0

System-wide capacity

Provided by: calliope.constraints.planning.node_constraints_build_total()

This constraint sets a maximum for capacity, e_cap, across all locations for any given technology:∑︁
𝑥

𝑒𝑐𝑎𝑝(𝑥, 𝑦) ≤ 𝑒𝑐𝑎𝑝,𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑥(𝑦)

If 𝑒𝑐𝑎𝑝,𝑡𝑜𝑡𝑎𝑙_𝑒𝑞𝑢𝑎𝑙𝑠 is given instead, this becomes
∑︀

𝑥 𝑒𝑐𝑎𝑝(𝑥, 𝑦) ≤ 𝑒𝑐𝑎𝑝,𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑥(𝑦).∑︁
𝑦

∑︁
𝑥

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡𝑚𝑎𝑥,𝑐)× (1 +𝑚𝑐) ≤ 𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)×
∑︁
𝑦𝑐

∑︁
𝑥

(𝑒𝑐𝑎𝑝(𝑦, 𝑥)/𝑒𝑒𝑓𝑓 (𝑦, 𝑥, 𝑡𝑚𝑎𝑥,𝑐))

where 𝑦𝑐 is the subset of y that delivers the carrier c and 𝑚𝑐 is the system margin for that carrier.

For each carrier (with the name carrier_name), Calliope attempts to read the model-wide option
system_margin.carrier_name, only applying this constraint if a setting exists.

Optional constraints

Optional constraints are included with Calliope but not loaded by default (see the configuration section for instructions
on how to load them in a model).

These optional constraints can be used both in planning and operational modes.

Ramping

Provided by: calliope.constraints.optional.ramping_rate()

Constrains the rate at which plants can adjust their output, for technologies that define constraints.e_ramping:

𝑑𝑖𝑓𝑓 =
𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) + 𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡)

𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡)
− 𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡− 1) + 𝑐𝑐𝑜𝑛(𝑐, 𝑦, 𝑥, 𝑡− 1)

𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡− 1)

𝑚𝑎𝑥_𝑟𝑎𝑚𝑝𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 𝑒𝑟𝑎𝑚𝑝𝑖𝑛𝑔 × 𝑒𝑐𝑎𝑝(𝑦, 𝑥)

𝑑𝑖𝑓𝑓 ≤ 𝑚𝑎𝑥_𝑟𝑎𝑚𝑝𝑖𝑛𝑔_𝑟𝑎𝑡𝑒
𝑑𝑖𝑓𝑓 ≥ −1×𝑚𝑎𝑥_𝑟𝑎𝑚𝑝𝑖𝑛𝑔_𝑟𝑎𝑡𝑒

Group fractions

Provided by: calliope.constraints.optional.group_fraction()

This component provides the ability to constrain groups of technologies to provide a certain fraction of total out-
put, a certain fraction of total capacity, or a certain fraction of peak power demand. See Parents and groups in the
configuration section for further details on how to set up groups of technologies.

The settings for the group fraction constraints are read from the model-wide configuration, in a group_fraction
setting, as follows:

group_fraction:
capacity:

renewables: ['>=', 0.8]

38 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

This is a minimal example that forces at least 80% of the installed capacity to be renewables. To activate the
output group constraint, the output setting underneath group_fraction can be set in the same way, or
demand_power_peak to activate the fraction of peak power demand group constraint.

For the above example, the c_group_fraction_capacity constraint sets up an equation of the form∑︁
𝑦*

∑︁
𝑥

𝑒𝑐𝑎𝑝(𝑦, 𝑥) ≥ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×
∑︁
𝑦

∑︁
𝑥

𝑒𝑐𝑎𝑝(𝑦, 𝑥)

Here, 𝑦* is the subset of 𝑦 given by the specified group, in this example, renewables. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the fraction
specified, in this example, 0.8. The relation between the right-hand side and the left-hand side, ≥, is determined by
the setting given, >=, which can be ==, <=, or >=.

If more than one group is listed under capacity, several analogous constraints are set up.

Similarly, c_group_fraction_output sets up constraints in the form of∑︁
𝑦*

∑︁
𝑥

∑︁
𝑡

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡) ≥ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×
∑︁
𝑦

∑︁
𝑥

∑︁
𝑡

𝑐𝑝𝑟𝑜𝑑(𝑐, 𝑦, 𝑥, 𝑡)

Finally, c_group_fraction_demand_power_peak sets up constraints in the form of∑︁
𝑦*

∑︁
𝑥

𝑒𝑐𝑎𝑝(𝑦, 𝑥) ≥ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛× (−1−𝑚𝑐)× 𝑝𝑒𝑎𝑘

𝑝𝑒𝑎𝑘 =

∑︀
𝑥 𝑟(𝑦𝑑, 𝑥, 𝑡𝑝𝑒𝑎𝑘)× 𝑟𝑠𝑐𝑎𝑙𝑒(𝑦𝑑, 𝑥)

𝑡𝑖𝑚𝑒𝑟𝑒𝑠(𝑡𝑝𝑒𝑎𝑘)

This assumes the existence of a technology, demand_power, which defines a demand (negative resource). 𝑦𝑑 is
demand_power. 𝑚𝑐 is the capacity margin defined for the carrier c in the model-wide settings (see System margin).
𝑡𝑝𝑒𝑎𝑘 is the timestep where 𝑟(𝑦𝑑, 𝑥, 𝑡) is maximal.

Whether any of these equations are equalities, greater-or-equal-than inequalities, or lesser-or-equal-than inequalities,
is determined by whether >=, <=, or == is given in their respective settings.

Available area

Provided by: calliope.constraints.optional.max_r_area_per_loc()

Where several technologies require space to acquire resource (e.g. solar collecting technologies) at a given location,
this constraint provides the ability to limit the total area available at a location:

𝑎𝑟𝑒𝑎𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑥) ≥
∑︁
𝑦

∑︁
𝑥𝑖

𝑟𝑎𝑟𝑒𝑎(𝑦, 𝑥𝑖)

Where xi is the set of locations within the family tree, descending from and including x.

Model configuration

Note: See Configuration reference for a complete listing of all available configuration options.

To run a model, two things are needed: a model definition that defines such things as technologies, locations, costs
and constraints, and run settings, which specify how the given model should be run. At their most basic, these two
components can be specified in just two YAML files:

1.6. Model configuration 39

Calliope Documentation, Release 0.5.0

• model.yaml, which sets up the model and may import any number of additional files in order to split large
models up into manageable units. It must also specify, via the data_path setting, the directory with data files
for those technologies that have data explicit in space and time. The data directory must contain, at a minimum,
a file called set_t.csv which defines the model’s timesteps. See Using time series data below for more
information on this.

• run.yaml, which sets up run-specific and environment-specific settings such as which solver to use. It must
also, with the model setting, specify which model should be run, by pointing to that model’s primary model
configuration file (e.g., model.yaml).

Either of these files can have an arbitrary name, but it makes sense to call them something like run.yaml (for the
run settings) and model.yaml (for the model definition).

The remainder of this section deals with the model configuration. See Run configuration for the run configuration.

The model definition can be split into several files in two ways:

1. Model configuration files can can use an import statement to specify a list of paths to additional files to import
(the imported files, in turn, may include further files, so arbitrary degrees of nested configurations are possible).
The import statement can either give an absolute path or a path relative to the importing file. If a setting is
defined both in the importing file and the imported file, the imported settings are overridden.

2. The model setting in the run settings may either give a single file or a list of files, which will be combined on
model initialization. An example of this is:

model:
- model.yaml # Define general model settings
- techs.yaml # Define technologies, their constraints and costs
- locations.yaml # Define locations and transmission capacities

Note: Calliope includes a command-line tool, calliope new, which will create a new model at the given path,
based on the built-in national-scale example model and its run configuration:

calliope new my_new_model

This makes it easier to experiment with the built-in example, and to quickly create a model by working off an existing
skeleton.

Technologies

A technology’s identifier can be any alphanumeric string. The index of all technologies y is constructed at model
instantiation from all defined technologies. At the very minimum, a technology should define some constraints and
some costs. A typical supply technology that has an infinite resource without spatial or temporal definition might
define:

my_tech:
parent: 'supply'
name: 'My test technology'
carrier_out: 'some_energy_carrier'
constraints:

e_cap.max: 1000 # kW
costs:

monetary:
e_cap: 500 # per kW of e_cap.max

A demand technology, with its demand data stored in a time series in the file demand.csv, might look like this:

40 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

my_demand_tech:
parent: 'demand'
carrier_in: 'some_energy_carrier'
constraints:

r: 'file=demand.csv'

Technologies must always define a parent, and this can either be one of the pre-defined abstract base technologies or
another previously defined technology. The pre-defined abstract base technologies that can be inherited from are:

• supply: Supplies energy to a carrier, has a positive resource.

• supply_plus: Supplies energy to a carrier, has a positive resource. Additional possible constraints, including
efficiencies and storage, distinguish this from supply.

• demand: Demands energy from a carrier, has a negative resource.

• unmet_demand: Supplies unlimited energy to a carrier with a very high cost, but does not get counted as a
supply technology for analysis and grouping purposes. An unmet_demand technology for all relevant carriers
should usually be included in a model to keep the solution feasible in all cases (see the tutorials for a practical
example).

• unmet_demand_as_supply_tech: Works like unmet_demand but is a normal supply technology, so
it does get counted as a supply technology for analysis and grouping purposes.

• storage: Stores energy.

• transmission: Transmits energy from one location to another.

• conversion: Converts energy from one carrier to another.

• conversion_plus: Converts energy from one or more carrier(s) to one or more different carrier(s).

A technology inherits the configuration that its parent specifies (which, in turn, inherits from its own parent). The
abstract base technologies inherit from a model-wide default technology called defaults.

It is possible, for example, to define a wind technology that specifies generic characteristics for wind power plants,
and then multiple additional technologies, such as wind_onshore and wind_offshore, that specify parent:
wind, but also override some of the generic wind settings with their own.

See Overriding technology options below for additional information on how technology settings propagate through
the model and how they can be overridden.

Refer to Technology for a complete list of all available technology constraints and costs.

Note: The identifiers of the abstract base technologies are reserved and cannot be used for a user-defined technology.
In addition, defaults is also a reserved identifier and cannot be used.

Parents and groups

Because each technology must define a parent, the definition of all technologies represents a tree structure, with the
built-in defaults representing the root node, the built-in abstract base technologies inheriting from that root node, and
all other user-defined technologies inheriting from one of the abstract base technologies.

There are two important aspects to this model definition structure.

First, only leaf nodes (the outermost nodes) in this tree may actually be used as technologies in model definitions.
In other words, the parent-child inheritance structure allows technologies to inherit settings from their parents, but
only those technologies without any children themselves are considered “real”. Calliope will raise an error if this
requirement is not met.

1.6. Model configuration 41

Calliope Documentation, Release 0.5.0

Second, every non-leaf node is implicitly a group of technologies, and the solution returned by Calliope reports
aggregated information for each defined technology and its children (see Analyzing results).

The group option only has an effect on supply diversity functionality in the analysis module (again, see Analyzing
results for details). Because every non-leaf technology is implicitly a group, those that should be considered as distinct
groups for the purpose of diversity of supply must be explicitly marked with group: true.

Fig. 1.14: An example of a simple technology inheritance tree. renewables could define any defaults that both pv
and wind should inherit, furthermore, it sets group: true. Thus, for purposes of supply diversity, pv and wind
will be counted together, while nuclear will be counted separately.

Locations

A location’s name can be any alphanumeric string, but using integers makes it easier to define constraints for a whole
range of locations by using the syntax from--to. Locations can be given as a single location (e.g., location1),
a range of integer location names using the -- operator (e.g., 0--10), or a comma-separated list of alphanumeric
location names (e.g., location1,location2,10,11,12). Using override, some settings can be overridden
on a per-location and per-technology basis (see below).

Locations may also define a parent location using within, as shown in the following example:

locations:
location1:

techs: ['demand_power', 'nuclear']
override:

nuclear:
constraints:

e_cap.max: 10000
location2:

techs: ['demand_power']
offshore1, offshore2:

within: location2
techs: ['offshore_wind']

The energy balancing constraint looks at a location’s level to decide which locations to consider in balancing supply
and demand. Locations that are not within another location are implicitly at the topmost level. Supply and demand

42 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

within locations on the topmost level must always be be balanced, but they can exchange energy with each other via
transmission technologies, which may define parameters such as costs, distance, and losses.

Locations that are contained within a parent location have implicit loss-free and cost-free transmission between them-
selves and the parent location. The balancing constraint makes sure that supply and demand within a location and its
direct children is balanced.

Warning: If a location contained within a parent location itself defines children, it is no longer included in the
implicit free transmission between its siblings and parent location. In turn, it receives implicit free transmission
with its own children.

Transmission nodes

A location can also act as just a branch in a transmission network. This is relevant for locations where transmission
links split into several lines, without any other technologies at those locations. In this case, the location definition
becomes:

locations:
location1:

techs: ['transmission-tech']

Where transmission-tech can refer to any previously defined transmission technology which passes
through that location. Listing transmission technologies is not necessary for any other location type.

Transmission links

Transmission links are defined in the model definition as follows:

links:
location1,location2:

transmission-tech:
constraints:

e_cap.max: 10000
location1,location3:

transmission-tech:
...

another-transmission-tech:
...

transmission-tech can refer to any previously defined technology, but that technology must have the abstract
base technology transmission as a parent

It is possible to specify multiple possible transmission technologies (e.g., with different costs or efficiencies) between
two locations by simply listing them all.

Transmission links can also specify a distance, which transmission technologies can use to compute distance-
dependent costs or efficiencies. An e_loss can be specified under constraints_per_distance and costs
for any cost class can be specified under costs_per_distance (see example below).

links:
location1,location2:

transmission-tech:
distance: 500

techs:

1.6. Model configuration 43

Calliope Documentation, Release 0.5.0

transmission-tech:
per_distance constraints specified per 100 units of distance
per_distance: 100
constraints_per_distance:

e_loss: 0.01 # loss per 100 units of distance
costs_per_distance:

monetary:
e_cap: 10 # cost per 100 units of distance

Overriding technology options

Technologies can define generic options, for example name, constraints, for example constraints.e_cap.max,
and costs, for example costs.monetary.e_cap.

These options can be overridden in several ways, and whenever such an option is accessed by Calliope it works its
way through the following list until it finds a definition (so entries further up in this list take precedence over those
further down):

1. Override for a specific location x1 and technology y1, which may be defined via locations (e.g.
locations.x1.override.y1.constraints.e_cap.max)

2. Setting specific to the technology y1 if defined in techs (e.g. techs.y1.constraints.e_cap.max)

3. Check whether the immediate parent of the technology y defines the option (assuming that y1 specifies
parent: my_parent_tech, e.g. techs.my_parent_tech.constraints.e_cap.max)

4. If the option is still not found, continue along the chain of parent-child relationships. Since every technology
should inherit from one of the abstract base technologies, and those in turn inherit from the model-wide de-
faults, this will ultimately lead to the model-wide default setting if it has not been specified anywhere else. See
Technology constraints for a complete listing of those defaults.

The following technology options can be overriden on a per-location basis:

• x_map

• constraints.*

• constraints_per_distance.*

• costs.*

The following settings cannot be overridden on a per-location basis:

• Any other options, such as parent or carrier

• costs_per_distance.*

• depreciation.*

Using time series data

Note: If a parameter is not explicit in time and space, it can be specified as a single value in the model definition (or,
using location-specific overrides, be made spatially explicit). This applies both to parameters that never vary through
time (for example, cost of installed capacity) and for those that may be time-varying (for example, a technology’s
available resource).

44 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Defining a model’s time steps

Irrespective of whether it actually uses time-varying parameters, a model must at specify its timesteps with a file
called set_t.csv. This must contain two columns (comma-separated), the first one being integer indices, and the
second, ISO 8601 compatible timestamps (usually in the format YYYY-MM-DD hh:mm:ss, e.g. 2005-01-01
00:00:00).

For example, the first few lines of a file specifying hourly timesteps for the year 2005 would look like this:

0,2005-01-01 00:00:00
1,2005-01-01 01:00:00
2,2005-01-01 02:00:00
3,2005-01-01 03:00:00
4,2005-01-01 04:00:00
5,2005-01-01 05:00:00
6,2005-01-01 06:00:00

Defining time-varying parameters

For parameters that vary in time, time series data can be read from CSV files. This can be done in two ways (using the
example of r):

1. Specify r: file=filename.csv to pick the desired CSV file.

2. Specify r: file. In this case, the file name is automatically determined according to the format
tech_param.csv (e.g., pv_r.csv for the parameter r of a technology with the identifier pv).

Each CSV file must have integer indices in the first column which match the integer indices from set_t.csv. The
first row must be column names, while the rest of the cells are the actual (integer or floating point) data values:

,loc1,loc2,loc3,...
0,10,20,10.0,...
1,11,19,9.9,...
2,12,18,9.8,...
...

In the most straightforward case, the column names in the CSV files correspond to the location names defined in the
model (in the above example, loc1, loc2 and loc3). However, it is possible to define a mapping of column names
to locations. For example, if our model has two locations, uk and germany, but the electricity demand data columns
are loc1, loc2 and loc3, then the following x_map definition will read the demand data for the desired locations
from the specified columns:

electricity_demand:
x_map: 'uk: loc1, germany: loc2'
constraints:

r: 'file=demand.csv'

Warning: After reading a CSV file, if any columns are missing (i.e. if a file does not contain columns for all
locations defined in the current model), the value for those locations is simply set to 0 for all timesteps.

Note: x_map maps column names in an input CSV file to locations defined in the model, in the format
name_in_model: name_in_file, with as many comma-separated such definitions as necessary.

1.6. Model configuration 45

Calliope Documentation, Release 0.5.0

In all cases, all CSV files, alongside set_t.csv, must be inside the data directory specified by data_path in the
model definition.

For example, the files for a model specified in model.yaml, which defined data_path: model_data, might
look like this (+ are directories, - files):

- model.yaml
+ model_data/

- set_t.csv
- tech1_r.csv
- tech2_r.csv
- tech2_e_eff.csv
- ...

When reading time series, the r_scale_to_peak option can be useful. Specifying this will automatically scale
the time series so that the peak matches the given value. In the case of r for demand technologies, where r will be
negative, the peak is instead a trough, and this is handled automatically. In the below example, the electricity demand
timeseries is loaded from demand.csv and scaled such that the demand peak is 60,000:

electricity_demand:
constraints:

r: 'file=demand.csv'
r_scale_to_peak: -60000

Calliope provides functionality to automatically adjust the resolution of time series data to make models more compu-
tationally tractable. See Time resolution adjustment for details on this.

Loading optional constraints

Calliope uses “constraint generator” functions that read the model configuration and build model constraints based
on it. Constraint generators for optional constraints are included in the calliope.constraints.optional
module. In addition, custom-built user constraints can be added by loading additional constraint generator functions.
They can be added in model.yaml by specifying constraints, for example:

constraints:
- constraints.optional.ramping_rate
- my_custom_module.my_constraint

When resolving constraint names, Calliope first checks whether the constraint is part of Calliope itself (in the above
example, this is the case for constraints.optional.ramping_rate, which is included in Calliope). If the
constraint is not found as part of Calliope, the first part of the dot-separated name is interpreted as a Python module
name (in the above example, my_custom_module). The module is imported and the constraint loaded from it.

This architecture makes it possible to add constraints in a modular way without modifying the Calliope source code.
Custom constraints have access to all model configuration, so that additional settings can easily be included anywhere
in the model configuration to support the functionality of custom constraints. See Development guide for information
on this.

Run configuration

Note: See Run settings in the configuration reference for a complete listing of all available configuration options.

At a minimum, the run configuration must provide three settings, as shown in this example:

46 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

model: 'model_config/model.yaml'
mode: 'plan'
solver: 'glpk'

model specifies the path to the model configuration file for the model to be run. mode specifies whether the model
should be run in planning (plan) or operational (operate) mode (see Running the model). Finally, solver
specifies the solver to be used. Calliope has been tested with GLPK, Gurobi and CPLEX. Any of the solvers that
Pyomo is compatible with should work.

Additional (optional) settings, including debug settings, can be specified in the run configuration. In particular, the run
settings can override any model settings by specifying override, e.g.:

override:
techs:

nuclear:
costs:

monetary:
e_cap: 1000

Note: If run settings override the data_path setting and specify a relative path, that path will be interpreted as
relative to the run settings file and not the model settings file being overridden.

Instead of directly overriding settings within the run configuration file using an override block, it is also possible to
specify an additional model configuration file with overriding settings by using the model_override: path/
to/model_override.yaml setting (the path given here is relative to the run configuration file).

The optional settings to adjust the timestep resolution and those for parallel runs are discussed below. For a complete
list of the other available settings, see Run settings in the configuration reference.

Time resolution adjustment

Models must have a default timestep length (defined implicitly by the timesteps defined in set_t.csv), and all time
series files used in a given model must conform to that timestep length requirement.

However, this default resolution can be adjusted over parts of the dataset via configuring time in the run settings.
At its most basic, this allows running a function that can perform arbitrary adjustments to the time series data in the
model, via time.function, and/or applying a series of masks to the time series data to select specific areas of
interest, such as periods of maximum or minimum production by certain technologies, via time.masks.

The available options include:

1. Uniform time resolution reduction through the resample function, which takes a pandas-compatible rule de-
scribing the target resolution. For example, to resample to 6-hourly timesteps:

time:
function: resample
function_options: {'resolution': '6H'}

2. Deriving representative days from the input time series, by applying either k-means or hierarchical clustering as
defined in calliope.time_clustering, for example:

time:
function: apply_clustering
function_options: {clustering_func: 'get_clusters_kmeans', how: 'mean', k: 20}

1.7. Run configuration 47

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html

Calliope Documentation, Release 0.5.0

3. Heuristic selection: application of one or more of the masks defined in calliope.time_masks, via a list of
masks given in time.masks. See Time series in the API documentation for the available masking functions.
Options can be passed to the masking functions by specifying options. A time.function can still be
specified and will be applied to the masked areas (i.e. those areas of the time series not selected), as in this
example which looks for the week of minimum and maximum potential wind production (assuming a wind
technology was specified), then reduces the rest of the input time series to 6-hourly resolution:

time:
masks:

- {function: week, options: {day_func: 'extreme', tech: 'wind', how: 'max'}}
- {function: week, options: {day_func: 'extreme', tech: 'wind', how: 'min'}}

function: resample
function_options: {'resolution': '6H'}

Note: When loading a model, all time steps initially have the same weight. Time step resolution reduction methods
may adjust the weight of individual timesteps; this is used for example to give appropriate weight to the operational
costs of aggregated typical days in comparison to individual extreme days, if both exist in the same processed time
series. See the implementation of constraints in calliope.constraints.base for more detail.

Settings for parallel runs

The run settings can also include a parallel section.

This section is parsed when using the calliope generate command-line tool to generate a set of runs to be
executed in parallel (see Parallel runs). A run settings file defining parallel can still be used to execute a single
model run, in which case the parallel section is simply ignored.

The concept behind parallel runs is to specify a base model (via the run configuration’s model setting), then define a
set of model runs using this base model, but overriding one or a small number of settings in each run. For example,
one could explore a range of costs of a specific technology and how this affects the result.

Specifying these iterations is not (yet) automated, they must be manually entered under parallel.iterations:
section. However, Calliope provides functionality to gather and process the results from a set of parallel runs (see
Analyzing results).

At a minimum, the parallel block must define:

• a name for the run

• the environment of the cluster (if it is to be run on a cluster), currently supported is bsub and qsub. In
either case, the generated scripts can also be run manually

• iterations: a list of model runs, with each entry giving the settings that should be overridden for that run.
The settings are run settings, so, for example, time.function can be overridden. Because the run settings
can themselves override model settings, via override, model settings can be specified here, e.g. override.
techs.nuclear.costs.monetary.e_cap.

The following example parallel settings show the available options. In this case, two iterations are defined, and each
of them overrides the nuclear e_cap costs (override.techs.nuclear.costs.monetary.e_cap):

parallel:
name: 'example-model' # Name of this run
environment: 'bsub' # Cluster environment, choices: bsub, qsub
data_path_adjustment: '../../../model_config'
Execute additional commands in the run script before starting the model
pre_run: ['source activate pyomo']

48 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Execute additional commands after running the model
post_run: []
iterations:

- override.techs.nuclear.costs.monetary.e_cap: 1000
- override.techs.nuclear.costs.monetary.e_cap: 2000

resources:
threads: 1 # Set to request a non-default number of threads
wall_time: 30 # Set to request a non-default run time in minutes
memory: 1000 # Set to request a non-default amount of memory in MB

This also shows the optional settings available:

• data_path_adjustment: replaces the data_path setting in the model configuration during parallel runs
only

• pre_run and post_run: one or multiple lines (given as a list) that will be executed in the run script before
/ after running the model. If running on a computing cluster, pre_run is likely to include a line or two setting
up any environment variables and activating the necessary Python environment.

• resources: specifying these will include resource requests to the cluster controller into the generated run
scripts. threads, wall_time, and memory are available. Whether and how these actually get processed or
honored depends on the setup of the cluster environment.

For an iteration to override more than one setting at a time, the notation is as follows:

iterations:
- first_option: 500

second_option: 10
- first_option: 600
second_option: 20

See Parallel runs in the section on running models for details on how to use the parallel settings to generate and
execute parallel runs.

Running the model

There are two basic modes for the model: planning mode and operational mode. The mode is set in the run configura-
tion.

In planning mode, constraints are given as upper and lower boundaries and the model decides on an optimal system
configuration.

In operational mode, all capacity constraints are fixed and the system is operated with a receding horizon control
algorithm (see Model-wide settings for the settings that control the receding horizon).

In either case, there are three ways to run the model:

1. With the calliope run command-line tool.

2. By generating and then executing parallel runs with the calliope generate command-line tool.

3. By programmatically creating and running a model from within other Python code, or in an interactive Python
session.

Single runs with the command-line tool

The included command-line tool calliope run will execute a given run configuration:

1.8. Running the model 49

Calliope Documentation, Release 0.5.0

$ calliope run my_model/run.yaml

It will generate and solve the model, then save the results to the the output directory given by output.path in the
run configuration.

Two output formats are available: a collection CSV files or a single NetCDF file. They can be chosen by settings
output.format in the run configuration (set to netcdf or csv). The read module provides methods to read
results stored in either of these formats, so that they can then be analyzed with the analysis module.

Parallel runs

Warning: This functionality is currently not Windows-compatible.

Scripts to simplify the creation and execution of a large number of Calliope model runs are generated with the
calliope generate command-line tool as follows:

• Create a run.yaml file with a parallel: section as needed (see Settings for parallel runs).

• On the command line, run calliope generate path/to/run.yaml.

• By default, this will create a new subdirectory inside a runs directory in the current working directory. You
can optionally specify a different target directory by passing a second path to calliope generate, e.g.
calliope generate path/to/run.yaml path/to/my_run_files.

• Calliope generates several files and directories in the target path. The most important are the Runs subdirectory
which hosts the self-contained configuration for the runs and run.sh script, which is responsible for executing
each run. In order to execute these runs in parallel on a compute cluster, a submit.sh script is also generated
containing job control data, and which can be submitted via a cluster controller (e.g., qsub submit.sh).

The run.sh script can simply be called with an integer argument from the sequence (1, number of parallel runs) to
execute a given run, e.g. run.sh 1, run.sh 2, etc. This way the runs can easily be executed irrespective of the
parallel computing environment available.

Note: Models generated via calliope generate automatically save results as a single NetCDF file per run in-
side the parallel runs’ Output subdirectory, regardless of whether the output.path or output.format options
have been set.

See Settings for parallel runs for details on configuring parallel runs.

Running programmatically from other Python code

The most basic way to run a model programmatically from within a Python interpreter is to create a Model instance
with a given run.yaml configuration file, and then call its run() method:

import calliope
model = calliope.Model(config_run='/path/to/run_configuration.yaml')
model.run()

If config_run is not specified (i.e. model = Model()), an error is raised. See Built-in example models for
information on instantiating a simple example model without specifying a run configuration.

config_run can also take an AttrDict object containing the configuration. Furthermore, Model() has an
override parameter, which takes an AttrDict with settings that will override the given run settings.

50 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

After instantiating the Model object, and before calling the run() method, it is possible to manually inspect and
adjust the configuration of the model.

After the model has been solved, an xarray Dataset containing solution variables and aggregated statistics is accessible
under the solution property on the model instance.

The API documentation gives an overview of the available methods for programmatic access.

Extracting results from a completed model run

If running single runs via the command-line tool or using the parallel run functionality, results will be saved as either a
single NetCDF file per model run or a set of CSV files per model run. These can then be read back into an interactive
Python session for analysis – see Analyzing results – or further processed with any other tool available to the modeller.

When working with the in-memory solution object, which is an n-dimensional xarray.Dataset, the xarray docu-
mentation should be consulted (this will be the case either in interactive runs, or after having read it back into memory
from disk),

It is easy to extract 2-dimensional slices from the solution by using xarray’s ability to extract pandas DataFrames. See
the Tutorials for examples of how this is done.

The easiest path to extracting data from a model without dealing with xarray, pandas, or other Python data analysis
tools, is to set the output.format in the run configuration to csv, which results in CSV files that can be read for
example with common spreadsheet software.

Debugging failing runs

What will typically go wrong, in order of decreasing likelihood:

• The model is improperly defined or missing data. Calliope will attempt to diagnose some common errors and
raise an appropriate error message.

• The model is consistent and properly defined but infeasible. Calliope will be able to construct the model and
pass it on to the solver, but the solver (after a potentially long time) will abort with a message stating that the
model is infeasible.

• There is a bug in Calliope causing the model to crash either before being passed to the solver, or after the solver
has completed and when results are passed back to Calliope.

Calliope provides some run configuration options to make it easier to determine the cause of the first two of these
possibilities. See the debugging options described in the configuration reference.

Python debugging

If using Calliope interactively in a Python session and/or developing custom constraints and analysis functionality, we
recommend reading up on the Python debugger and (if using IPython or Jupyter Notebooks) making heavy use of the
%debug magic.

Analyzing results

The solution object

On successfully solving a model, Calliope creates a solution, which is a multi-dimensional xarray.Dataset, with the
model and run configuration stored as AttrDict attributes of the dataset (config_model and config_run).

1.9. Analyzing results 51

http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/
http://xarray.pydata.org/en/stable/
https://docs.python.org/3/library/pdb.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-debug
http://xarray.pydata.org/en/stable/data-structures.html#dataset

Calliope Documentation, Release 0.5.0

The analysis tools included with Calliope expect to operate on a dataset.

The solution contains model variables such as rs, s, e_cap, r_area, etc, as well as variables derived from them
such as capacity_factor and levelized_cost. It also contains several two-dimensional summary and meta-
data tables:

• metadata: metadata for each technology (such as its stack_weight or color), used for analysis and
plotting.

• groups: definition of technology groups and their members.

• shares: technology and group based shares of production, consumption and installed capacity (index is y).

• summary: summary information on each technology.

Reading solutions

Calliope provides functionality to read a solution from a single NetCDF file or a collection of CSV files and re-
construct a solution object for further analysis in a Python session:

solution_from_netcdf = calliope.read.read_netcdf('my_solution.nc')

solution_from_csv = calliope.read.read_csv('path/to/output_directory')

Reading results from parallel runs

A successfully completed parallel run will contain multiple solutions inside its “Output” directory. To read all solu-
tions, including information about the iterations they correspond to, use:

results = calliope.read.read_dir('path/to/Output')

The results variable is an AttrDict with two keys:

• iterations: a DataFrame containing the iterations from this parallel run

• solutions: an AttrDict with iteration IDs as keys and the individual solution objects as values

This allows easy access to and analysis of solutions.

Analyzing solutions

Refer to the API documentation for the analysis module for an overview of available analysis functionality.

Refer to the tutorials for some basic analysis techniques.

Note: The built-in analysis and plotting functionality is still experimental. More documentation on it will be added
in a future release.

52 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Configuration reference

YAML configuration file format

All configuration files (with the exception of time series data files) are in the YAML format, “a human friendly data
serialization standard for all programming languages”.

Configuration for Calliope is usually specified as option: value entries, where value might be a number, a
text string, or a list (e.g. a list of further settings).

Calliope allows an abbreviated form for long, nested settings:

one:
two:

three: x

can be written as:

one.two.three: x

Calliope also allows a special import: directive in any YAML file. This can specify one or several YAML files
to import. If both the imported file and the current file define the same option, the definition in the current file takes
precedence.

Using quotation marks (' or ") to enclose strings is optional, but can help with readability. The three ways of setting
option to text below are equivalent:

option: "text"
option: 'text'
option: text

Sometimes, a setting can be either enabled or disabled, in this case, the boolean values true or false are used.

Comments can be inserted anywhere in YAML files with the # symbol. The remainder of a line after # is interpreted
as a comment.

See the YAML website for more general information about YAML.

Calliope internally represents the configuration as AttrDicts, which are a subclass of the built-in Python dictionary
data type (dict) with added functionality such as YAML reading/writing and attribute access to keys.

Warning: When generating parallel runs with the calliope generate command-line tool, any import
directive, unlike other settings that point to file system paths such as model_override or data_path, is
evaluated immediately and all imported files are combined into one model configuration file for the parallel runs.
This means that while paths used in import directives don’t need adjustment for parallel runs, other settings that
work with file system paths probably do need adjustment to account for the way files are laid out on the system
running the parallel runs. For this purpose, the data_path_adjustment inside a parallel configuration
block can change the data path for parallel runs only.

Model-wide settings

These settings can either be in a central model.yaml file, or imported from other files if desired.

Mandatory model-wide settings with no default values (see Model configuration for more information on defining
techs, locations and links):

1.10. Configuration reference 53

http://www.yaml.org/

Calliope Documentation, Release 0.5.0

data_path: 'data' # Path to CSV (time series) data files

techs:
... technology definitions ...

locations:
... location definitions ...

links:
... transmission link definitions ...

Optional model-wide settings with no default values (example settings are shown here):

constraints: # List of additional constraints
- constraints.optional.ramping_rate
... other constraints to load ...

group_fraction:
... setup for group_fraction constraints (see model formulation section) ...

metadata: # Metadata for analysis and plotting
map_boundary: []
location_coordinates:
location_ordering:

Optional model-wide settings that have defaults set by Calliope (default values are shown here):

Chooses the objective function
If not set, defaults to the included cost minimization objective
objective: 'constraints.objective.objective_cost_minimization'

startup_time: 12 # Length of startup period (hours)

opmode: # Operation mode settings
horizon: 48 # Optimization period length (hours)
window: 24 # Operation period length (hours)

system_margin: # Per-carrier system margins
power: 0

Technology

A technology with the identifier tech_identifier is configured by a YAML block within a techs block. The
following block shows all available options and their defaults (see further below for the constraints, costs, and depre-
ciation definitions):

tech_identifier:
name: # A descriptive name, e.g. "Offshore wind"
parent: # An abstract base technology, or a previously defined one
carrier: false # Energy carrier to produce/consume, for all except conversion
stack_weight: 100 # Weight of this technology in the stack when plotting
color: false # HTML color code, or `false` to choose a random color
group: false # Make this a group for purposes of supply diversity analysis
weight: 1.0 # Cost weighting in objective function
constraints:

... constraint definitions ...

54 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

costs:
monetary:

... monetary cost definitions ...
... other cost classes ...

depreciation:
... depreciation definitions ...

Each technology must define a parent`, which can either be an abstract base technology
such as ``supply, or any other technology previously defined in the model. The technology inherits all settings
from its parent, but overwrites anything it specifies again itself. See Parents and groups for more details on this and
on the function of the group: option.

Each technology must also define at least one of the carrier options. carrier implicitly defines carrier_in
& carrier_out for storage and transmission technologies, carrier_in for demand technologies, and
carrier_out for supply/supply_plus technologies. Supply and demand technologies can be defined using
carrier_in/carrier_out instead, which will produce the same result. For conversion and conversion_plus,
there are further options available:

tech_identifier:
primary_carrier: false # Setting the primary carrier_out to associate with costs &

→˓ constraints, if multiple primary carriers are assigned
carrier_in: false # Primary energy carrier(s) to consume
carrier_in_2: false # Secondary energy carrier(s) to consume, conversion_plus only
carrier_in_3: false # Tertiary energy carrier(s) to consume, conversion_plus only
carrier_out: false # Primary energy carrier(s) to produce
carrier_out_2: false # Secondary energy carrier(s) to produce, conversion_plus

→˓only
carrier_out_3: false # Tertiary energy carrier(s) to produce, conversion_plus only

If carriers are given at secondary or tertiary level, they are given in an indented list, with their consumption/production
with respect to carrier_in/carrier_out. For example:

tech_identifier_1:
carrier_in: 'primary_consumed_carrier'
carrier_in_2:

secondary_consumed_carrier: 0.8 # consumes 0.8 units of ``secondary_consumed_
→˓carrier`` for every 1 unit of ``primary_consumed_carrier``

carrier_in_3:
tertiary_consumed_carrier: 0.1 # consumes 0.1 units of ``tertiary_consumed_

→˓carrier`` for every 1 unit of ``primary_consumed_carrier``
carrier_out: 'primary_produced_carrier'
carrier_out_2:

secondary_produced_carrier: 0.5 # produces 0.5 units of ``secondary_produced_
→˓carrier`` for every 1 unit of ``primary_produced_carrier``

carrier_out_3:
tertiary_produced_carrier: 0.9 # produces 0.9 units of ``tertiary_produced_

→˓carrier`` for every 1 unit of ``primary_produced_carrier``

Where multiple carriers are included in a carrier level, any of those carriers can meet the carrier level requirement.
They are listed in the same indented level, for example:

tech_identifier_1:
primary_carrier: 'primary_produced_carrier' # ``primary_produced_carrier`` will

→˓be used to cost/constraint application
carrier_in:

primary_consumed_carrier: 1 # if chosen, will consume 1 unit of ``primary_
→˓consumed_carrier`` to meet the requirements of ``carrier_in``

1.10. Configuration reference 55

Calliope Documentation, Release 0.5.0

primary_consumed_carrier_2: 0.5 # if chosen, will consume 0.5 units of
→˓``primary_consumed_carrier_2`` to meet the requirements of ``carrier_in``

carrier_in_2:
secondary_consumed_carrier: 0.8 # if chosen, will consume 0.8 units of

→˓``secondary_consumed_carrier`` for every 1 unit of ``carrier_in`` being consumed
secondary_consumed_carrier_2: 0.1 # if chosen, will consume 0.1 / 0.8 = 0.125

→˓units of ``secondary_consumed_carrier_2`` for every 1 unit of ``carrier_in`` being
→˓consumed

carrier_out:
primary_produced_carrier: 1 # if chosen, will produce 1 unit of ``primary_

→˓produced_carrier`` for every 1 unit of ``carrier_out`` being produced
primary_produced_carrier_2: 0.8 # if chosen, will produce 0.8 units of

→˓``primary_produced_carrier_2`` for every 1 unit of ``carrier_in`` being produced

Note: A primary_carrier must be defined when there are multiple carrier_out values defined.
primary_carrier can be defined as any carrier in a technology’s output carriers (including secondary and ter-
tiary carriers).

stack_weight and color determine how the technology is shown in model outputs. The higher the
stack_weight, the lower a technology will be shown in stackplots.

The depreciation definition is optional and only necessary if defaults need to be overridden. However, at least
one constraint (such as e_cap.max) and one cost should usually be defined.

Transmission technologies can additionally specify per-distance constraints and per-distance costs (see Transmission
links). Currently, only e_loss constraints and e_cap costs are supported:

transmission_tech:
per_distance constraints specified per 100 units of distance
per_distance: 100
constraints_per_distance:

e_loss: 0.01 # loss per 100 units of distance
costs_per_distance:

monetary:
e_cap: 10 # cost per 100 units of distance

Note: Transmission technologies can define both an e_loss (per-distance) and an e_eff (distance-independent).
For example, setting e_eff to 0.9 implies a 10% loss during transmission, independent of distance. If both e_loss
and e_eff are defined, their effects are cumulative.

Technology constraints

The following table lists all available technology constraint settings and their default values. All of these can be set by
tech_identifier.constraints.constraint_name, e.g. nuclear.constraints.e_cap.max.

Setting Default Details
force_r false Forces this technology to use all available r, rather than making it a maximum upper boundary (for production) or minimum lower boundary (for consumption)
r_unit power Sets the unit of r to either power (i.e. kW) or energy (i.e. kWh), which affects how resource time series are processed when performing time resolution adjustments
r_eff 1.0 Resource to/from storage conversion efficiency
r_area.min 0 Minimum installed collector area (m2)
r_area.max false Maximum installed collector area (m2), set to false by default in order to disable this constraint and force r_area to 1

Continued on next page

56 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

Table 1.1 – continued from previous page
Setting Default Details
r_area.equals false Specific installed collector area (m2)
r_area_per_e_cap false If set, forces r_area to follow e_cap with the given numerical ration (e.g. setting to 1.5 means that r_area == 1.5 * e_cap)
r_cap.min 0 Minimum installed resource to/from storage conversion capacity (kW)
r_cap.max inf Maximum installed resource to/from storage conversion capacity (kW)
r_cap.equals false Specific installed resource to/from storage conversion capacity (kW)
r_cap_equals_e_cap false If true, r_cap is forced to equal e_cap
r_scale 1.0 Scale resource by this value
r_scale_to_peak false Scale resource such that its peak is as defined here, false to disable. This setting only has an effect if a time series is used via r: file
allow_r2 false Allow secondary resource
r2_startup_only false Allow secondary resource during startup_time only (only has an effect if allow_r2 is true)
r2_eff 1.0 Secondary resource to/from storage conversion efficiency
r2_cap.min 0 Minimum installed secondary resource to storage conversion capacity (kW)
r2_cap.max inf Maximum installed secondary resource to storage conversion capacity (kW)
r2_cap.equals 0 Specific installed secondary resource to storage conversion capacity (kW)
r2_cap_follow false Can be set to e_cap or r_cap to set r2_cap.max to the respective value (in which case, any given r2_cap.max is ignored). false to disable
r2_cap_follow_mode ‘max’ Can be set to max or equals to specifiy which r2_cap constraint is specific by the variable given in r2_cap_follow
s_init 0 Initial storage level (kWh)
s_cap.min 0 Minimum storage capacity (kWh)
s_cap.max 0 Maximum storage capacity (kWh). If both this and s_time.max are set to non-zero values, the minimum resulting constraint of either s_time.max or s_cap.max is applied.
s_cap.equals false Specific storage capacity (kWh)
c_rate false Charge rate (0 to 1) defining maximum charge/discharge (kW) for a given maximum storage capacity (kWh)
s_time.max 0 Max storage time (full load hours). If both this and s_cap.max are set to non-zero values, the minimum resulting constraint of either s_time.max or s_cap.max is applied.
s_loss 0 Storage loss rate (per hour)
e_prod true Allow this technology to supply energy to the carrier
e_con false Allow this technology to consume energy from the carrier
p_eff 1.0 Plant parasitic efficiency (additional losses as energy gets transferred from the plant to the carrier, e.g. due to plant parasitic consumption)
e_eff 1.0 Storage to/from carrier conversion efficiency. Can be set to file or file: or to a single numerical value
e_cap.min 0 Minimum installed storage to/from carrier conversion capacity (kW), per location
e_cap.max 0 Maximum installed storage to/from carrier conversion capacity (kW), per location
e_cap.equals false Specific installed storage to/from carrier conversion capacity (kW), per location
e_cap.total_max inf Maximum installed storage to/from carrier conversion capacity (kW), model-wide
e_cap.total_equals false Specific installed storage to/from carrier conversion capacity (kW), model-wide
e_cap_scale 1.0 Scale all e_cap min/max/equals/total_max/total_equals constraints by this value
e_cap_min_use false Set to a value between 0 and 1 to force minimum storage to carrier capacity use for production technologies
e_ramping false Ramping rate (fraction of installed capacity per hour), set to false to disable ramping constraints (only has an effect if the optional ramping constraints are loaded)
export_cap false Maximum allowed export for a technology, set to false to disable.

Technology costs

These are all the available costs, which are set to 0 by default for every defined cost class. Costs are set by
tech_identifier.costs.cost_class.cost_name, e.g. nuclear.costs.monetary.e_cap.

1.10. Configuration reference 57

Calliope Documentation, Release 0.5.0

Setting De-
fault

Details

s_cap 0 Cost of storage capacity (per kWh)
r_area 0 Cost of resource collector area (per m2)
r_cap 0 Cost of resource conversion capacity (per kW)
r2_cap 0 Cost of secondary resource conversion capacity (per kW)
e_cap 0 Cost of carrier conversion capacity (per kW gross)
om_frac 0 Yearly O&M costs (fraction of total investment)
om_fixed 0 Yearly O&M costs (per kW of e_cap)
om_var 0 Variable O&M costs (per kWh of es_prod)
om_fuel 0 Fuel costs (per kWh of r used)
om_r2 0 Fuel costs for secondary resource (per kWh of rb used)
export 0 Cost of exporting excess energy (per kWh of export). Usually used in the negative sense,

as a subsidy.

Technology depreciation

These technology depreciation settings apply when calculating levelized costs. The interest rate can be set on a per-cost
class basis, and defaults to 0.10 for monetary and 0 for every other cost class.

plant_life: 25 # Lifetime of a plant (years)
interest:

default: 0 # Default interest rate if not specified for a cost class ``k``
monetary: 0.10 # Interest rate for the ``monetary`` cost class

Abstract base technologies

This lists all pre-defined abstract base technologies and the defaults they provide. Note that it is not possible to define
a technology with the same identifier as one of the abstract base technologies. In addition to providing default values
for some options, which abstract base technology a user-defined technology inherits from determines how Calliope
treats the technology internally. This internal treatment means that only a subset of available constraints are used for
each of the abstract base technologies.

supply

parent: defaults
constraints:

r: inf

Available constraints are as follows, with full descriptions found above, in Technology constraints:

stack_weight
color
carrier_out
group
x_map
export
constraints:

r
force_r
r_unit
r_area.min

58 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

r_area.max
r_area.equals
r_area_per_e_cap
e_prod
e_eff
e_cap.min
e_cap.max
e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping
export_cap

costs:
r_area
e_cap
om_frac
om_fixed
om_var
om_fuel
export

depreciation:
plant_life
interest

weight

supply_plus

parent: defaults

Available constraints are as follows, with full descriptions found above, in Technology constraints:

stack_weight
color
carrier_out
group
x_map
export
constraints:

r
force_r
r_unit
r_eff
r_area.min
r_area.max
r_area.equals
r_area_per_e_cap
r_cap.min
r_cap.max
r_cap.equals
r_cap_equals_e_cap
r_scale
r_scale_to_peak
allow_r2
r2_startup_only

1.10. Configuration reference 59

Calliope Documentation, Release 0.5.0

r2_eff
r2_cap.min
r2_cap.max
r2_cap.equals
r2_cap_follow
r2_cap_follow_mode
s_init
s_cap.min
s_cap.max
s_cap.equals
c_rate
s_time.max
s_loss
e_prod
p_eff
e_eff
e_cap.min
e_cap.max
e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping
export_cap

costs:
s_cap
r_area
r_cap
r2_cap
e_cap
om_frac
om_fixed
om_var
om_fuel
om_r2
export

depreciation:
plant_life
interest

weight

demand

parent: defaults
constraints:

r: 0
force_r: true
e_cap.max: inf
e_prod: false
e_con: true

Available constraints are as follows, with full descriptions found above, in Technology constraints:

stack_weight
color

60 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

carrier_in
group
x_map
export
constraints:

r
force_r
r_unit
r_area.min
r_area.max
r_area.equals
r_area_per_e_cap
e_con
e_eff
e_cap.min
e_cap.max
e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping

costs:
r_area
e_cap
om_frac
om_fixed
om_var
export

depreciation:
plant_life
interest

weight

unmet_demand

stack_weight: 0
color: '#666666'
parent: defaults
constraints:

r: inf
e_cap.max: inf

costs:
monetary:

om_var: 1.0e+9

There is also the option to include unmet demand as a “true” supply technology by making use of
unmet_demand_as_supply_tech:

stack_weight: 0
color: '#666666'
parent: supply
constraints:

e_cap.max: inf
costs:

monetary:

1.10. Configuration reference 61

Calliope Documentation, Release 0.5.0

om_var: 1.0e+9

In either case, the additional available constraints are the same as found for the supply abstract base technology.
However, it is generally not advised to edit any constraints pertaining to unmet_demand.

storage

Warning: The default value provided by storage for e_con‘ should not be overridden.

parent: defaults
constraints:

e_con: true
r: inf # not used but has to be defined as infinite to avoid issues

Available constraints are as follows, with full descriptions found above, in Technology constraints :

stack_weight
color
carrier
group
x_map
export
constraints:

e_prod
s_init
s_cap.min
s_cap.max
s_cap.equals
c_rate
s_time.max
s_loss
e_eff
e_cap.min
e_cap.max
e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping
export_cap

costs:
s_cap
e_cap
om_frac
om_fixed
om_var
export

depreciation:
plant_life
interest

weight

62 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

transmission

Warning: The default value provided by transmission for‘‘e_con‘‘ should not be overridden.

parent: defaults
per_distance: 1
constraints:

e_cap.max: inf
e_con: true
r: inf # not used but has to be defined as infinite to avoid issues

Available constraints are as follows, with full descriptions found above, in Technology constraints :

stack_weight
color
carrier
group
x_map
export
constraints:

e_prod
e_eff
e_cap.min
e_cap.max
e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping
export_cap

costs:
e_cap
om_frac
om_fixed
om_var
export

costs_per_distance:
e_cap

constraints_per_distance:
e_loss

depreciation:
plant_life
interest

weight

conversion

parent: defaults
constraints:

e_con: true
r: inf # not used but has to be defined as infinite to avoid issues

Available constraints are as follows, with full descriptions found above, in Technology constraints :

1.10. Configuration reference 63

Calliope Documentation, Release 0.5.0

stack_weight
color
carrier_in
carrier_out
group
x_map
export
constraints:

e_prod
e_eff
e_cap.min
e_cap.max
e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping
export_cap

costs:
e_cap
om_frac
om_fixed
om_var
export

depreciation:
plant_life
interest

weight

conversion_plus

parent: defaults
constraints:

e_con: true
r: inf # not used but has to be defined as infinite to avoid issues

Available constraints are as follows, with full descriptions found above, in Technology constraints :

stack_weight
color
primary_carrier
carrier_in
carrier_in_2
carrier_in_3
carrier_out
carrier_out_2
carrier_out_3
group
x_map
export
constraints:

e_prod
e_eff
e_cap.min
e_cap.max

64 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

e_cap.equals
e_cap.total_max
e_cap.total_equals
e_cap_scale
e_cap_min_use
e_ramping
export_cap

costs:
e_cap
om_frac
om_fixed
om_var
export

depreciation:
plant_life
interest

weight

Run settings

These settings will usually be in a central run.yaml file, which may import from other files if desired.

Mandatory settings:

• model: Path to the model configuration which is to be used for this run

• mode: plan or operate, whether to run the model in planning or operational mode

• solver: Name of the solver to use

Optional settings:

• Output options – these are only used when the model is run via the calliope run command-line tool:

– output.path: Path to an output directory to save results (will be created if it doesn’t exist already)

– output.format: Format to save results in, either netcdf or csv

• parallel: Settings used to generate parallel runs, see Settings for parallel runs for the available options

• time: Settings to adjust time resolution, see Time resolution adjustment for the available options

• override: Override arbitrary settings from the model configuration. E.g., this could specify techs.
nuclear.costs.monetary.e_cap: 1000 to set the e_cap costs of nuclear, overriding whatever
was set in the model configuration

• model_override: Path to a YAML configuration file which contains additional overrides for the model
configuration. If both this and override are specified, anything defined in override takes precedence over
model configuration added in the model_override file.

• solver_options: A list of options, which are passed on to the chosen solver, and are therefore solver-
dependent (see below)

Debugging failing runs

A number of run settings exist to make debugging failing runs easier:

1.10. Configuration reference 65

Calliope Documentation, Release 0.5.0

• subset_y, subset_x, subset_t: specify if only a subset of technologies (y), locations (x), or timesteps
(t) should be used for this run. This can be useful for debugging purposes. The timestep subset can be specified
as [startdate, enddate], e.g. ['2005-01-01', '2005-01-31']. The subsets are processed
before building the model and applying time resolution adjustments, so time resolution functions will only see
the reduced set of data.

In addition, settings relevant to debugging can be specified inside a debug block as follows:

• debug.keep_temp_files: Whether to keep temporary files inside a Logs directory rather than deleting
them after completing the model run (which is the default). Useful to debug model problems.

• debug.overwrite_temp_files: When debug.keep_temp_files is true, and the Logs directory
already exists, Calliope will stop with an error, but if this setting is true, it will overwrite the existing temporary
files.

• debug.symbolic_solver_labels: By default, Pyomo uses short random names for all generated model
components, rather than the variable and parameter names used in the model setup. This is faster but for debug-
ging purposes models must be human-readable. Thus, particularly when using debug.keep_temp_files:
true, this setting should also be set to true.

• debug.echo_solver_log: Displays output from the solver on screen while solving the model (by default,
output is only logged to the log file, which is removed unless debug.keep_temp_files is true).

The following example debug block would keep temporary files, removing possibly existing files from a previous run
beforehand:

debug:
keep_temp_files: true
overwrite_temp_files: true

Solver options

Gurobi: Refer to the Gurobi manual, which contains a list of parameters. Simply use the names given in the documen-
tation (e.g. “NumericFocus” to set the numerical focus value). For example:

solver: gurobi

solver_options:
Threads: 3
NumericFocus: 2

CPLEX: Refer to the CPLEX parameter list. Use the “Interactive” parameter names, replacing any spaces with
underscores (for example, the memory reduction switch is called “emphasis memory”, and thus becomes “empha-
sis_memory”). For example:

solver: cplex

solver_options:
mipgap: 0.01
mip_polishafter_absmipgap: 0.1
emphasis_mip: 1
mip_cuts: 2
mip_cuts_cliques: 3

66 Chapter 1. User guide

https://www.gurobi.com/documentation/
https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.5.0/com.ibm.cplex.zos.help/Parameters/topics/introListAlpha.html

Calliope Documentation, Release 0.5.0

Built-in example models

This section gives a listing of all the YAML configuration files included in the built-in example models. Refer to the
tutorials section for a brief overview of how these parts together can provide a simple working model.

The example models are accessible in the calliope.examples module. To create an instance of an example
model, e.g.:

urban_model = calliope.examples.UrbanScale()

National-scale example

Available as calliope.examples.NationalScale.

Model settings

The layout of the model directory is as follows (+ denotes directories, - files):

+ model_config
+ data

- csp_r.csv
- demand-1.csv
- demand-2.csv
- set_t.csv

- locations.yaml
- model.yaml
- techs.yaml

model.yaml:

##
IMPORT OTHER FILES
##

Can either be paths relative to this file, or absolute paths

import:
- 'techs.yaml'
- 'locations.yaml'

##
MODEL NAME
##

name: "Test model"

##
DATASET PATH
##

Can either be a path relative to this file, or an absolute path

data_path: 'data'

1.11. Built-in example models 67

Calliope Documentation, Release 0.5.0

##
OBJECTIVE FUNCTION
##

'constraints.objective.objective_cost_minimization' is used by default
objective:

##
ADDITIONAL CONSTRAINTS
##

constraints:
- constraints.optional.ramping_rate

##
OTHER MODEL-WIDE OPTIONS
##

system_margin:
power: 0
heat: 0

techs.yaml:

##
TECHNOLOGY DEFINITIONS
##

techs:

##
Supply
##
ccgt:

name: 'Combined cycle gas turbine'
color: '#FDC97D'
stack_weight: 200
parent: supply
carrier_out: power
constraints:

r: inf
e_eff: 0.5
e_cap.max: 40000 # kW

costs:
monetary:

e_cap: 750 # USD per kW
om_fuel: 0.02 # USD per kWh

csp:
name: 'Concentrating solar power'
color: '#99CB48'
stack_weight: 100
parent: supply_plus
carrier_out: power
constraints:

use_s_time: true
s_time.max: 24
s_loss: 0.002
r: file # Will look for `csp_r.csv` in data directory

68 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

e_eff: 0.4
p_eff: 0.9
r_area.max: inf
e_cap.max: 10000

costs:
monetary:

s_cap: 50
r_area: 200
r_cap: 200
e_cap: 1000
om_var: 0.002

depreciation:
monetary:

interest: 0.12

##
Storage
##
battery:

name: 'Battery storage'
color: '#DC5CE5'
parent: storage
carrier: power
constraints:

e_cap.max: 1000 # kW
s_cap.max: inf
c_rate: 4
e_eff: 0.95 # 0.95 * 0.95 = 0.9025 round trip efficiency
s_loss: 0 # No loss over time assumed

costs:
monetary:

s_cap: 200 # USD per kWh storage capacity
##
Demand
##
demand_power:

name: 'Power demand'
parent: demand
carrier: power

unmet_demand_power:
name: 'Unmet power demand'
parent: unmet_demand
carrier: power

##
Transmission
##
ac_transmission:

name: 'AC power transmission'
parent: transmission
carrier: power
constraints:

e_eff: 0.85
costs:

monetary:
e_cap: 200
om_var: 0.002

1.11. Built-in example models 69

Calliope Documentation, Release 0.5.0

locations.yaml:

##
LOCATIONS
##

locations:
region1:

techs: ['demand_power', 'unmet_demand_power', 'ccgt']
override:

demand_power:
x_map: 'region1: demand'
constraints:

r: file=demand-1.csv
r_scale_to_peak: -40000

ccgt:
constraints:

e_cap.max: 30000 # increased to ensure no unmet_demand in first
→˓timestep

region2:
techs: ['demand_power', 'unmet_demand_power', 'battery']
override:

demand_power:
x_map: 'region2: demand'
constraints:

r: file=demand-2.csv
r_scale_to_peak: -5000

region1-1,region1-2,region1-3:
within: region1
techs: ['csp']

##
TRANSMISSION CAPACITIES
##

links:
region1,region2:

ac_transmission:
constraints:

e_cap.max: 10000

##
METADATA
##

metadata:
lower left corner lon, lower left corner lat, upper right corner lon, upper

→˓right corner lat
map_boundary: [-10, 35, 5, 45]

location_coordinates: # lat, lon coordinates
region1: [40, -2]
region2: [40, -8]
region1-1: [41, -2]
region1-2: [39, -1]

70 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

region1-3: [39, -2]

Run settings

run.yaml:

##
RUN SETTINGS
##

name: "Test run" # Run name -- distinct from model name!

model: 'model_config/model.yaml'

output: # Only used if run via the 'calliope run' command-line tool
format: csv # Choices: netcdf, csv
path: 'Output' # Will be created if it doesn't exist

mode: plan # Choices: plan, operate

solver: glpk

##
PARALLEL RUN SETTINGS
##

Ignored unless run via the 'calliope generate' tool

parallel:
name: example-model-national
environment: bsub # Choices: bsub, qsub
pre_run: # Commands to run before executing model
post_run: # Commands to run after executing model
iterations:

- subset_t: ['2005-01-01', '2005-01-31']
override.locations.r1.techs: ['demand', 'unmet_demand', 'ccgt']

- subset_t: ['2005-02-01', '2005-02-31']
override.locations.r1.techs: ['demand', 'unmet_demand']

resources: # Request resources on a computing cluster
threads: # Non-default number of threads
wall_time: # Run time (minutes)
memory: # Working memory (MB)

##
TIME RESOLUTION ADJUSTMENT
##

time:
resolution: 6 # Reduce rest of data to 6-hourly timesteps
masks: # Look for week where CSP output is minimal
- function: mask_extreme_week
options: {what: min, tech: csp}
#

##
SUBSETS
##

1.11. Built-in example models 71

Calliope Documentation, Release 0.5.0

Leave any of these empty to disable subsetting

subset_y: [] # Subset of technologies
subset_x: [] # Subset of locations
subset_t: ['2005-01-01', '2005-01-05'] # Subset of timesteps

##
MODEL SETTINGS OVERRIDE
##

Override anything in the model configuration

override:

##
DEBUG OPTIONS
##

debug:
keep_temp_files: false # Keep temporary files
symbolic_solver_labels: false # Use human-readable component labels? (slower)

Urban-scale example

Available as calliope.examples.UrbanScale.

Model settings

model.yaml:

##
IMPORT OTHER FILES
##

Can either be paths relative to this file, or absolute paths

import:
- 'techs.yaml'
- 'locations.yaml'

##
MODEL NAME
##

name: "Urban scale example model"

##
DATASET PATH
##

Can either be a path relative to this file, or an absolute path

data_path: 'data'

72 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

##
OBJECTIVE FUNCTION
##

'constraints.objective.objective_cost_minimization' is used by default
objective:

##
ADDITIONAL CONSTRAINTS
##

constraints:
- constraints.optional.max_r_area_per_loc

OTHER MODEL-WIDE OPTIONS
##

system_margin:
power: 0
heat: 0
cooling: 0

techs.yaml:

##
TECHNOLOGY DEFINITIONS
##

techs:

##-GRID SUPPLY-##

supply_grid_power:
name: 'National grid import'
parent: supply
carrier: power
constraints:

r: inf
e_cap.max: 2000

costs:
monetary:

e_cap: 15
om_fuel: 0.1 # 10p/kWh electricity price #ppt

supply_gas:
name: 'Natural gas import'
parent: supply
carrier: gas
constraints:

r: inf
e_cap.max: 2000

costs:
monetary:

e_cap: 1
om_fuel: 0.025 # 2.5p/kWh gas price #ppt

##-Renewables-##

1.11. Built-in example models 73

Calliope Documentation, Release 0.5.0

pv:
name: 'Solar photovoltaic power'
color: '#99CB48'
stack_weight: 100
parent: supply
export: true
carrier_out: power
constraints:

r: file # Will look for `pv_r.csv` in data directory - already accounted
→˓for panel efficiency

e_eff: 0.85
e_cap.max: 250
r_area.max: 1500

costs:
monetary:

e_cap: 1350
Conversion

boiler:
name: 'Natural gas boiler'
stack_weight: 100
parent: conversion
carrier_out: heat
carrier_in: gas
constraints:

e_cap.max: 600
e_eff: 0.85

Conversion_plus

chp:
name: 'Combined heat and power'
stack_weight: 100
parent: conversion_plus
export: true
primary_carrier: power
carrier_in: gas
carrier_out: power
carrier_out_2:

heat: 0.8
constraints:

e_cap.max: 1300
e_eff: 0.405

costs:
monetary:

e_cap: 750
om_var: 0.004 # .4p/kWh for 4500 operating hours/year
export: file=export_power.csv

##-DEMAND-##

demand_power:
name: 'Electrical demand'
parent: demand
carrier: power

unmet_demand_power:

74 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

name: 'Unmet electrical demand'
parent: unmet_demand
carrier: power

demand_heat:
name: 'Heat demand'
parent: demand
carrier: heat

unmet_demand_heat:
name: 'Unmet heat demand'
parent: unmet_demand
carrier: heat

##-DISTRIBUTION-##

power_lines:
name: 'Electrical power distribution'
parent: transmission
carrier: power
constraints:

e_cap.max: 2000
e_eff: 0.98

costs_per_distance:
monetary:

e_cap: 0.01

heat_pipes:
name: 'District heat distribution'
parent: transmission
carrier: heat
constraints:

e_cap.max: 2000
constraints_per_distance:

e_loss: 0.025
costs_per_distance:

monetary:
e_cap: 0.3

locations.yaml:

##
LOCATIONS
##

locations:
X1:

techs: ['chp', 'pv',
'supply_grid_power', 'supply_gas',
'demand_power', 'demand_heat',
'unmet_demand_power', 'unmet_demand_heat']
available_area: 500
override:

demand_power.constraints.r: file=demand_power.csv
demand_heat.constraints.r: file=demand_heat.csv
supply_grid_power.costs.monetary.e_cap: 100 # cost of transformers

X2:

1.11. Built-in example models 75

Calliope Documentation, Release 0.5.0

techs: ['boiler', 'pv',
'supply_gas',
'demand_power', 'demand_heat',
'unmet_demand_power', 'unmet_demand_heat'
]
available_area: 1300
override:

demand_power.constraints.r: file=demand_power.csv
demand_heat.constraints.r: file=demand_heat.csv
boiler.costs.monetary.e_cap: 43.1 # different boiler costs
pv.costs.monetary:

om_var: -0.0203 # revenue for just producing electricity
export: -0.0491 # FIT return for PV export

X3:
techs: ['boiler', 'pv',
'supply_gas',
'demand_power', 'demand_heat',
'unmet_demand_power', 'unmet_demand_heat'
]
available_area: 900
override:

demand_power.constraints.r: file=demand_power.csv
demand_heat.constraints.r: file=demand_heat.csv
boiler.costs.monetary.e_cap: 78 # different boiler costs
pv:

constraints:
e_cap.max: 50 # changing tariff structure below 50kW

costs.monetary:
om_fixed: -80.5 # reimbursement per kWp from FIT

N1: # location for branching heat transmission network
techs: ['heat_pipes']

links:
X1,X2:

power_lines:
distance: 0.5

X1,X3:
power_lines:

distance: 0.6
X1,N1:

heat_pipes:
distance: 0.25

N1,X2:
heat_pipes:

distance: 0.25
N1,X3:

heat_pipes:
distance: 0.35

Run settings

run.yaml:

76 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

##
RUN SETTINGS
##

name: "Test run" # Run name -- distinct from model name!

model: 'model_config/model.yaml'

output: # Only used if run via the 'calliope run' command-line tool
format: csv # Choices: netcdf, csv
path: 'Output' # Will be created if it doesn't exist

mode: plan # Choices: plan, operate

solver: glpk

##
TIME RESOLUTION ADJUSTMENT
##

time:
resolution: 6 # Reduce rest of data to 6-hourly timesteps
masks: # Look for week where CSP output is minimal
- function: mask_extreme_week
options: {what: min, tech: csp}
#

##
SUBSETS
##

Leave any of these empty to disable subsetting

subset_y: [] # Subset of technologies
subset_x: [] # Subset of locations
subset_t: ['2005-01-01', '2005-01-05'] # Subset of timesteps

##
MODEL SETTINGS OVERRIDE
##

Override anything in the model configuration

override:

##
DEBUG OPTIONS
##

debug:
keep_temp_files: false # Keep temporary files
symbolic_solver_labels: false # Use human-readable component labels? (slower)

Development guide

The code lives on GitHub at calliope-project/calliope.

1.12. Development guide 77

https://github.com/calliope-project/calliope

Calliope Documentation, Release 0.5.0

Development takes place in the master branch. Stable versions are tagged off of master with semantic versioning.

Tests are included and can be run with py.test from the project’s root directory.

See the list of open issues and planned milestones for an overview of where development is heading, and join us on
Gitter to ask questions or discuss code.

Installing a development version

With pip:

$ pip install -e git+https://github.com/calliope-project/calliope.git#egg=calliope

Or, for a more easily modifiable local installation, first clone the repository to a location of your choosing, and then
install via pip:

$ git clone https://github.com/calliope-project/calliope
$ pip install -e ./calliope

Creating modular extensions

Constraint generator functions

By making use of the ability to load custom constraint generator functions (see Loading optional constraints), a
Calliope model can be extended by additional constraints easily without modifying the core code.

Constraint generator functions are called during construction of the model with the Model object passed as the only
parameter.

The Model object provides, amongst other things:

• The Pyomo model instance, under the property m

• The model data under the data property

• An easy way to access model configuration with the get_option() method

A constraint generator function can add constraints, parameters, and variables directly to the Pyomo model instance
(Model.m). Refer to the Pyomo documentation for information on how to construct these model components.

The default cost-minimizing objective function provides a good example:

import pyomo.core as po # pylint: disable=import-error

def objective_cost_minimization(model):
"""
Minimizes total system monetary cost.
Used as a default if a model does not specify another objective.

"""
m = model.m

def obj_rule(m):
return sum(model.get_option(y + '.weight') *

sum(m.cost[y, x, 'monetary']
for x in m.x) for y in m.y)

78 Chapter 1. User guide

http://semver.org/
https://github.com/calliope-project/calliope/issues
https://github.com/calliope-project/calliope/milestones
https://gitter.im/calliope-project/calliope
https://gitter.im/calliope-project/calliope
https://software.sandia.gov/trac/pyomo/

Calliope Documentation, Release 0.5.0

m.obj = po.Objective(sense=po.minimize, rule=obj_rule)
m.obj.domain = po.Reals

See the source code of the ramping_rate() function for a more elaborate example.

The process of including custom, optional constraints is as follows:

First, create the source code (see e.g. the above example for the ramping_rate function) in a file, for example
my_constraints.py

Then, assuming your custom constraint generator function is called my_first_custom_constraint and is
defined in my_constraints.py, you can tell Calliope to load it by adding it to the list of optional constraints in
your model configuration as follows:

constraints:
- constraints.optional.ramping_rate
- my_constraints.my_first_custom_constraint

This assumes that the file my_constraints.py is importable when the model is run. It must therefore either
be in the directory from which the model is run, installed as a Python module (see this document on how to create
importable and installable Python packages), or the Python import path has to be adjusted according to the official
Python documentation.

Subsets

Calliope internally builds many subsets to better manage constraints, in particular, subsets of different groups of
technologies. These subsets can be used in the definition of constraints and are used extensively in the definition of
Calliope’s built-in constraints. See the detailed definitions in calliope.sets, an overview of which is included
here.

Main sets & sub-sets

Technologies:

• m.y_demand: all demand sources

– m.y_sd_r_area: if any r_area constraints are defined (shared)

– m.y_sd_finite_r: if finite resource limit is defined (shared)

• m.y_supply: all basic supply technologies

– m.y_sd_r_area: if any r_area constraints are defined (shared)

– m.y_sd_finite_r: if finite resource limit is defined (shared)

• m.y_storage: specifically storage technologies

• m.y_supply_plus: all supply+ technologies

– m.y_sp_r_area: If any r_area constraints are defined

– m.y_sp_finite_r: if finite resource limit is defined

– m.y_sp_r2: if secondary resource is allowed

• m.y_conversion: all basic conversion technologies

• m.y_conversion_plus: all conversion+ technologies

– m.y_cp_2out: secondary carrier(s) out

1.12. Development guide 79

https://python-packaging.readthedocs.io/en/latest/index.html
https://docs.python.org/3/tutorial/modules.html#the-module-search-path
https://docs.python.org/3/tutorial/modules.html#the-module-search-path

Calliope Documentation, Release 0.5.0

– m.y_cp_3out: tertiary carrier(s) out

– m.y_cp_2in: secondary carrier(s) in

– m.y_cp_3in: tertiary carrier(s) in

• m.y_transmission: all transmission technologies

• m.y_unmet: dummy supply technologies to log

Locations:

• m.x_trans: all transmission locations

• m.x_r: all locations which act as system sources/sinks

• m.x_store: all locations in which storage is allowed

Shared subsets

• m.y_finite_r: shared between y_demand, y_supply, and y_supply_plus. Contains:

– m.y_sd_finite_r

– m.y_sp_finite_r

• m.y_r_area: shared between y_demand, y_supply, and y_supply_plus. Contains:

– m.y_sd_r_area

– m.y_sp_r_area

Meta-sets

Technologies:

• m.y: all technologies, includes:

– m.y_demand

– m.y_supply

– m.y_storage

– m.y_supply_plus

– m.y_conversion

– m.y_conversion_plus

– m.y_transmission

• m.y_sd: all basic supply & demand technologies, includes:

– m.y_demand

– m.y_supply

• m.y_store: all technologies that have storage capabilities, includes:

– m.y_storage

– m.y_supply_plus

Locations:

80 Chapter 1. User guide

Calliope Documentation, Release 0.5.0

• m.x: all locations, includes:

– m.x_trans

– m.x_r

– m.x_store

Time functions and masks

Like custom constraint generator functions, custom functions that adjust time resolution can be loaded dynamically
during model initialization. By default, Calliope first checks whether the name of a function or time mask refers to
a function from the calliope.time_masks or calliope.time_functions module, and if not, attempts to
load the function from an importable module:

time:
masks:

- {function: week, options: {day_func: 'extreme', tech: 'wind', how: 'min'}}
- {function: my_custom_module.my_custom_mask, options: {...}}

function: my_custom_module.my_custom_function
function_options: {...}

Profiling

To profile a Calliope run with the built-in national-scale example model, then visualize the results with snakeviz:

make profile # will dump profile output in the current directory
snakeviz calliope.profile # launch snakeviz to visually examine profile

Use mprof plot to plot memory use.

Other options for visualizing:

• Interactive visualization with KCachegrind (on macOS, use QCachegrind, installed e.g. with brew install
qcachegrind)

pyprof2calltree -i calliope.profile -o calliope.calltree
kcachegrind calliope.calltree

• Generate a call graph from the call tree via graphviz

brew install gprof2dot
gprof2dot -f callgrind calliope.calltree | dot -Tsvg -o callgraph.svg

Checklist for new release

Pre-release

• Make sure all unit tests pass

• Make sure documentation builds without errors

• Make sure the release notes are up-to-date, especially that new features and backward incompatible changes are
clearly marked

1.12. Development guide 81

https://kcachegrind.github.io/

Calliope Documentation, Release 0.5.0

Create release

• Change _version.py version number

• Update changelog with final version number and release date

• Commit with message “Release vXXXX”, then add a “vXXXX” tag, push both to GitHub

• Create a release through the GitHub web interface, using the same tag, titling it “Release vXXXX” (required
for Zenodo to pull it in)

• Upload new release to PyPI: make all-dist

Post-release

• Update changelog, adding a new vXXXX-dev heading, and update _version.py accordingly, in preparation
for the next master commit

Note: Adding ‘-dev’ to the version string, such as __version__ = '0.1.0-dev', is required for the custom
code in doc/conf.py to work when building in-development versions of the documentation.

82 Chapter 1. User guide

CHAPTER 2

API documentation

Documents functions, classes and methods:

API Documentation

Model class

class calliope.Model(config_run=None, override=None)
Calliope model.

Parameters config_run : str or AttrDict, optional

Path to YAML file with run settings, or AttrDict containing run settings. If not given,
the included default run and model settings are used.

override : AttrDict, optional

Provide any additional options or override options from config_run by passing an
AttrDict of the form {'model_settings': 'foo.yaml'}. Any option possi-
ble in run.yaml can be specified in the dict, inluding override. options.

check_and_set_export()
In instances where a technology is allowing export, e.g. techs.ccgt.export: true then change ‘true’ to the
carrier of that technology.

functionality_switch(func_name)
Check if a given functionality of the model is required, based on whether there is any reference to it in
model configuration that isn’t defaults.

Args:

• func_name: str; the funcitonality to check

Returns: bool; Whether the functionality is switched is on (True) or off (False)

83

Calliope Documentation, Release 0.5.0

generate_model(t_start=None)
Generate the model and store it under the property m.

Args: t_start : if self.mode == ‘operate’, this must be specified, but that is done automatically via
solve_iterative() when calling run()

get_capacity_factor()
Get capacity factor.

NB: Only production, not consumption, is used in calculations.

get_carrier(y, direction, level=None, primary=False, all_carriers=False)
Get the carrier_in or carrier_out of a technology in the model

Parameters y: str

technology

direction: str, ‘in‘ or ‘out‘

For carrier_in and carrier_out repectively

level: int; 2 or 3; optional, default = None

for conversion_plus technologies, define the carrier level if not top level, e.g. level=3
gives carrier_out_3

primary: bool, optional, default = False

give primary carrier for a given technology, which is a carrier in carrier_out given ass
primary carrier in the technology definition

all_carriers: bool, optional, default = False

give all carriers for tech y and given direction. For conversion_plus technologies, this
will give an array of carriers, if more than one carrier has been defined in the given
direction. All levels are combined.

get_cp_carriers(y, x=None, direction=’out’)
Find all carriers for conversion_plus technology & return the primary output carrier as string and all other
output carriers as list of strings

get_distances()
Where distances are not given for links, use any metadata to fill in the gap. Distance calculated using
vincenty inverse formula (given in utils module).

get_eff_ref(var, y, x=None)
Get reference efficiency, falling back to efficiency if no reference efficiency has been set.

get_group_members(group, in_model=True, head_nodes_only=True, expand_transmission=True)
Return the member technologies of a group. If in_model is True, only technologies (head nodes) in use
in the current model are returned.

Returns:

• A list of group members if there are any.

• If a group has no members (is only member of other groups, i.e. a head node), a list with a single
item containing only the group/technology itself.

• An empty list if the group is defined but not allowed in the current model.

• None if the group doesn’t exist.

Other arguments:

84 Chapter 2. API documentation

Calliope Documentation, Release 0.5.0

head_nodes_only [if True, don’t return intermediate] groups, i.e. technology definitions
that are inherited from. Setting this to False only makes sense if in_model is also False,
because in_model=True implies that only head nodes are returned.

expand_transmission [if True, return in-model] transmission technologies in the form
tech:location.

get_levelized_cost()
Get levelized costs.

NB: Only production, not consumption, is used in calculations.

get_option(option, x=None, default=None, ignore_inheritance=False)
Retrieves options from model settings for the given tech, falling back to the default if the option is not
defined for the tech.

If x is given, will attempt to use location-specific override from the location matrix first before falling back
to model-wide settings.

If default is given, it is used as a fallback if no default value can be found in the regular inheritance
chain. If default is None and the regular inheritance chain defines no default, an error is raised.

If ignore_inheritance is True, the default is immediately used instead of a search through the
inheritance chain if the option has not been set for the given tech.

If the first segment of the option contains ‘:’, it will be interpreted as implicit tech subsetting: e.g. asking
for ‘hvac:r1’ implicitly uses ‘hvac:r1’ with the parent ‘hvac’, even if that has not been defined, to search
the option inheritance chain.

Examples:

•model.get_option('ccgt.costs.om_var')

•model.get_option('csp.weight')

•model.get_option('csp.r', x='33')

•model.get_option('ccgt.costs.om_var', default='defaults.costs.
om_var')

get_parent(y)
Returns the abstract base technology from which y descends.

get_t(timestamp, offset=0)
Get a timestamp before/after (by offset) from the given timestamp in the model’s set of timestamps. Raises
ModelError if out of bounds.

get_timeres(verify=False)
Returns resolution of data in hours.

If verify=True, verifies that the entire file is at the same resolution. self.
get_timeres(verify=True) can be called after Model initialization to verify this.

get_totals(t_subset=None, apply_weights=True)
Get total produced and consumed per technology and location.

get_var(var, dims=None, standardize_coords=True)
Return output for variable var as a pandas.Series (1d), pandas.Dataframe (2d), or xarray.DataArray (3d
and higher).

Parameters var : variable name as string, e.g. ‘es_prod’

dims : list, optional

indices as strings, e.g. (‘y’, ‘x’, ‘t’); if not given, they are auto-detected

2.1. API Documentation 85

Calliope Documentation, Release 0.5.0

initialize_timeseries()
Find any constraints/costs values requested as from ‘file’ in YAMLs and store that information.

ischild(y, of)
Returns True if y is a child of of, else False

load_results()
Load results into model instance for access via model variables.

prev_t(timestamp)
Return the timestep prior to the given timestep.

process_solution()
Called from both load_solution() and load_solution_iterative()

read_data()
Populate parameter data from CSV files or model configuration.

run(iterative_warmstart=True)
Instantiate and solve the model

save_solution(how)
Save model solution. how can be ‘netcdf’ or ‘csv’

scale_to_peak(df, peak, scale_time_res=True)
Returns the given dataframe scaled to the given peak value.

If scale_time_res is True, the peak is multiplied by the model’s time resolution. Set it to False to
scale things like efficiencies.

set_option(option, value, x=None)
Set option to value. Returns None on success.

A default can be set by passing an option like defaults.constraints.e_eff.

solve(warmstart=False)

Args:

warmstart [(default False) re-solve an updated model] instance

Returns: None

solve_iterative(iterative_warmstart=True)
Solve iterative by updating model parameters.

By default, on optimizations subsequent to the first one, warmstart is used to speed up the model generation
process.

Returns None on success, storing results under self.solution

Constraints

calliope.constraints.objective.objective_cost_minimization(model)
Minimizes total system monetary cost. Used as a default if a model does not specify another objective.

calliope.constraints.base.generate_variables(model)
Defines variables:

•r: resource -> tech (+ production

•r_area: resource collector area

•r2: secondary resource -> storage (+ production)

86 Chapter 2. API documentation

Calliope Documentation, Release 0.5.0

•c_prod: tech -> carrier (+ production)

•c_con: tech <- carrier (- consumption)

•s_cap: installed storage capacity

•r_cap: installed resource <-> storage conversion capacity

•e_cap: installed storage <-> grid conversion capacity (gross)

•r2_cap: installed secondary resource conversion capacity

•cost: total costs

•cost_con: construction costs

•cost_op_fixed: fixed operation costs

•cost_op_var: variable operation costs

•cost_op_fuel: primary resource fuel costs

•cost_op_r2: secondary resource fuel costs

calliope.constraints.base.get_constraint_param(model, param_string, y, x, t)
Function to get values for constraints which can optionally be loaded from file (so may have time dependency).

model = calliope model param_string = constraint as string y = technology x = location t = timestep

calliope.constraints.base.get_cost_param(model, param_string, k, y, x, t)
Function to get values for constraints which can optionally be loaded from file (so may have time dependency).

model = calliope model cost = cost name, e.g. ‘om_fuel’ k = cost type, e.g. ‘monetary’ y = technology x =
location t = timestep

calliope.constraints.base.node_constraints_transmission(model)
Constrain e_cap symmetrically for transmission nodes. Transmission techs only.

calliope.constraints.planning.node_constraints_build_total(model)

calliope.constraints.planning.system_margin(model)

calliope.constraints.optional.group_fraction(model)
Constrain groups of technologies to reach given fractions of e_prod.

calliope.constraints.optional.max_r_area_per_loc(model)
r_area of all technologies requiring physical space cannot exceed the available area of a location. Available
area defined for parent locations (in which there are locations defined as being ‘within’ it) will set the available
area limit for the sum of all the family (parent + all desecendants).

To define, assign a value to available_area for a given location, e.g.:

locations:
r1:

techs: ['csp']
available_area: 100000

To avoid including descendants in area limitation, ignore_descendants can be specified for the location,
in the same way as available_area.

calliope.constraints.optional.ramping_rate(model)
Ramping rate constraints.

Depends on: node_energy_balance, node_constraints_build

2.1. API Documentation 87

Calliope Documentation, Release 0.5.0

Time series

calliope.time_funcs.apply_clustering(data, timesteps, clustering_func, how, normalize=True,
**kwargs)

Apply the given clustering function to the given data.

Parameters data : xarray.Dataset

timesteps : pandas.DatetimeIndex or list of timesteps or None

clustering_func : str

Name of clustering function.

how : str

How to map clusters to data. ‘mean’ or ‘closest’.

normalize : bool, optional

If True (default), data is normalized before clustering is applied, using
normalized_copy().

**kwargs : optional

Arguments passed to clustering_func.

Returns data_new_scaled : xarray.Dataset

calliope.time_funcs.drop(data, timesteps, padding=None)
Drop timesteps from data, with optional padding around into the contiguous areas encompassed by the timesteps.

calliope.time_funcs.normalized_copy(data)
Return a copy of data, with the absolute taken and normalized to 0-1.

The maximum across all regions and timesteps is used to normalize.

calliope.time_masks.extreme(data, tech, var=’r’, how=’max’, length=‘1D’, n=1,
groupby_length=None, locations=None, padding=None)

Returns timesteps for period of length where var for the technology tech across the given list of
locations is either minmal or maximal.

Parameters data : xarray.Dataset

tech : str

Technology whose var to find extreme for.

var : str, optional

default ‘r’

how : str, optional

‘max’ (default) or ‘min’.

length : str, optional

Defaults to ‘1D’.

n : int, optional

Number of periods of length to look for, default is 1.

groupby_length : str, optional

Group time series and return n periods of length for each group.

locations : list, optional

88 Chapter 2. API documentation

Calliope Documentation, Release 0.5.0

List of locations to use, if None, uses all available locations.

padding : int, optional

Pad beginning and end of the unmasked area by the number of timesteps given.

normalize : bool, optional

If True (default), data is normalized using normalized_copy().

calliope.time_masks.zero(data, tech, var=’r’, locations=None)
Returns timesteps where var for the technology tech across the given list of locations is zero.

If locations not given, uses all available locations.

calliope.time_clustering.cophenetic_corr(X, Z)
Get the Cophenetic Correlation Coefficient of a clustering with help of the cophenet() function. This (very
very briefly) compares (correlates) the actual pairwise distances of all your samples to those implied by the
hierarchical clustering. The closer the value is to 1, the better the clustering preserves the original distances.

Source: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/

calliope.time_clustering.fancy_dendrogram(*args, **kwargs)
Code adapted from: https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/

calliope.time_clustering.get_clusters_hierarchical(data, tech=None, max_d=None,
k=None)

Parameters data : xarray.Dataset

Should be normalized

max_d : float or int, optional

Max distance for returning clusters.

k : int, optional

Number of desired clusters.

Returns clusters

X

Z

calliope.time_clustering.get_clusters_kmeans(data, tech=None, timesteps=None, k=5)

Parameters data : xarray.Dataset

Should be normalized

Returns clusters : dataframe

Indexed by timesteps and with locations as columns, giving cluster membership for first
timestep of each day.

centroids

calliope.time_clustering.map_clusters_to_data(data, clusters, how)
Returns a copy of data that has been clustered.

Parameters how : str

How to select data from clusters. Can be mean (centroid) or closest.

2.1. API Documentation 89

https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/

Calliope Documentation, Release 0.5.0

Reading results

calliope.read.read_dir(directory)
Combines output files from directory and return an AttrDict containing them all.

If a solution is missing or there is an error reading it, an empty AttrDict is added to the results in its stead and
the error is logged.

calliope.read.read_netcdf(path)
Read model solution from NetCDF4 file

Analyzing results

calliope.analysis.areas_below_resolution(solution, resolution)
Returns a list of (start, end) timestamp tuples delimiting those areas in the solution below the given timestep
resolution (in hours).

calliope.analysis.get_delivered_cost(solution, cost_class=’monetary’, carrier=’power’,
count_unmet_demand=False)

Get the levelized cost per unit of energy delivered for the given cost_class and carrier.

Parameters solution : solution container

cost_class : str, default ‘monetary’

carrier : str, default ‘power’

count_unmet_demand : bool, default False

Whether to count the cost of unmet demand in the final delivered cost.

calliope.analysis.get_domestic_supply_index(solution)
Assuming that solution specifies a domestic cost class to give each technology a domesticity score, return
the total domestic supply index for the given solution.

calliope.analysis.get_group_share(solution, techs, group, var=’e_prod’)
From solution.summary, get the share of the given list of techs from the total for the given group, for
the given var.

calliope.analysis.get_hhi(solution, shares_var=’e_cap’, exclude_patterns=[’unmet_demand’])
Returns the Herfindahl-Hirschmann diversity index.

𝐻𝐻𝐼 =
∑︀𝐼

𝑖=1 𝑝
2
𝑖

where 𝑝𝑖 is the percentage share of each technology i (0-100).

𝐻𝐻𝐼 ranges between 0 and 10,000. A value above 1800 is considered a sign of a concentrated market.

calliope.analysis.get_levelized_cost(solution, cost_class=’monetary’, carrier=’power’,
groups=None, locations=None, unit_multiplier=1.0)

Get the levelized cost per unit of energy produced for the given cost_class and carrier, optionally for a
subset of technologies given by groups and a subset of locations.

Parameters solution : solution container

cost_class : str, default ‘monetary’

carrier : str, default ‘power’

groups : list, default None

Limit the computation to members of the given groups (see the groups table in the
solution for valid groups). Defaults to [’supply’, ‘supply_plus’] if not given.

90 Chapter 2. API documentation

Calliope Documentation, Release 0.5.0

locations : str or iterable, default None

Limit the computation to the given location or locations.

unit_multiplier : float or int, default 1.0

Adjust unit of the returned cost value. For example, if model units are kW and kWh,
unit_multiplier=1.0 will return cost per kWh, and unit_multiplier=0.
001 will return cost per MWh.

calliope.analysis.get_swi(solution, shares_var=’e_cap’, exclude_patterns=[’unmet_demand’])
Returns the Shannon-Wiener diversity index.

𝑆𝑊𝐼 = −1×
∑︀𝐼

𝑖=1 𝑝𝑖 × ln(𝑝𝑖)

where where I is the number of categories and 𝑝𝑖 is each category’s share of the total (between 0 and 1).

𝑆𝑊𝐼 is zero when there is perfect concentration.

calliope.analysis.get_unmet_demand_hours(solution, carrier=’power’, details=False)
Get information about unmet demand from solution.

Parameters solution : solution container

carrier : str, default ‘power’

details : bool, default False

By default, only the number of hours with unmet are returned. If details is True, a dict
with ‘hours’, ‘timesteps’, and ‘dates’ keys is returned instead.

calliope.analysis.map_results(results, func, as_frame=False)
Applies func to each model solution in results, returning a pandas DataFrame (if as_frame is True) or
Series, indexed by the run names (if available).

calliope.analysis.plot_carrier_production(solution, carrier=’power’, subset={},
**kwargs)

Generate a stackplot of the production by the given carrier.

Parameters solution : model solution xarray.Dataset

carrier : str, optional

Name of the carrier to plot, default ‘power’.

subset : dict, optional

Specify an additional subset of Dataset coordinates, for example, dict(t=slice(‘2005-02-
01’, ‘2005-02-10’).

**kwargs : optional

Passed to plot_timeseries.

calliope.analysis.plot_installed_capacities(solution, tech_types=[’supply’, ‘sup-
ply_plus’, ‘conversion’, ‘conver-
sion_plus’, ‘storage’], unit_multiplier=1.0,
unit_label=’kW’, **kwargs)

Plot installed capacities (e_cap) with a bar plot.

Parameters solution : model solution xarray.Dataset

tech_types : list, optional

Technology types to include in the plot. Default is [’supply’, ‘supply_plus’, ‘conver-
sion’, ‘conversion_plus’, ‘storage’]

2.1. API Documentation 91

Calliope Documentation, Release 0.5.0

unit_multiplier : float or int, optional

Multiply installed capacities by this value for plotting. Defaults to 1.0

unit_label : str, optional

Label for capacity values. Default is ‘kW’, adjust this when changing
unit_multiplier.

**kwargs : optional

are passed to pandas.DataFrame.plot()

calliope.analysis.plot_timeseries(solution, data, carrier=’power’, demand=’demand_power’,
tech_types=[’supply’, ‘supply_plus’, ‘conversion’,
‘conversion_plus’, ‘storage’, ‘unmet_demand’], col-
ormap=None, ticks=None, resample_options=None,
resample_func=None, add_legend=True, ax=None)

Generate a stackplot of data for the given carrier, plotting demand on top.

Use plot_carrier_production for a simpler way to plot production by a given carrier.

Parameters solution : model solution xarray.Dataset

data : xarray.Dataset

Subset of solution to plot.

carrier : str, optional

Name of the carrier to plot, default ‘power’.

demand : str, optional

Name of a demand tech whose time series to plot on top, default ‘demand_power’.

tech_types : list, optional

Technology types to include in the plot. Default list is [’supply’, ‘supply_plus’ , ‘con-
version’, ‘storage’, ‘unmet_demand’].

colormap : matplotlib colormap, optional

Colormap to use. If not given, the colors specified for each technology in the solution’s
metadata are used.

ticks : str, optional

Where to draw x-axis (time axis) ticks. By default (None), auto-detects, but can manu-
ally set to either ‘hourly’, ‘daily’, or ‘monthly’.

resample_options : dict, optional

Give options for pandas.DataFrame.resample in a dict, to resample the entire time series
prior to plotting. Both resample_options and resample_func must be given for resam-
pling to happen. Default None.

resample_func : string, optional

Give the name of the aggregating function to use when resampling, e.g. “mean” or
“sum”. Default None.

calliope.analysis.plot_transmission(solution, tech=’ac_transmission’, carrier=’power’,
labels=’utilization’, figsize=(15, 15), fontsize=9,
show_scale=True, ax=None, **kwargs)

Plot transmission links on a map. Requires that model metadata have been defined with a lat/lon for each model
location and a boundary for the map display.

92 Chapter 2. API documentation

Calliope Documentation, Release 0.5.0

Requires Basemap and NetworkX to be installed.

Parameters solution : solution container

tech : str, default ‘ac_transmission’

Which transmission technology to plot.

carrier : str, default ‘power’

Which carrier to plot transmission for.

labels : str, default ‘utilization’

Determines how transmission links are labeled, either transmission or utilization.

figsize : (int, int), default (15, 15)

Size of resulting figure.

fontsize : int, default 9

Font size of figure labels.

show_scale : bool, default True

Plot a distance scale on the map.

ax : matplotlib axes, default None

**kwargs : are passed to analysis_utils.plot_graph_on_map()

Utility classes: AttrDict, Parallelizer, Exceptions

class calliope.utils.AttrDict(source_dict=None)
A subclass of dict with key access by attributes:

d = AttrDict({'a': 1, 'b': 2})
d.a == 1 # True

Includes a range of additional methods to read and write to YAML, and to deal with nested keys.

as_dict(flat=False)
Return the AttrDict as a pure dict (with nested dicts if necessary).

copy()
Override copy method so that it returns an AttrDict

del_key(key)
Delete the given key. Properly deals with nested keys.

classmethod from_yaml(f, resolve_imports=True)
Returns an AttrDict initialized from the given path or file object f, which must point to a YAML file.

If resolve_imports is True, import: statements are resolved recursively, else they are treated like
any other key.

When resolving import statements, anything defined locally overrides definitions in the imported file.

classmethod from_yaml_string(string)
Returns an AttrDict initialized from the given string, which must be valid YAML.

2.1. API Documentation 93

Calliope Documentation, Release 0.5.0

get_key(key, default=MISSING)
Looks up the given key. Like set_key(), deals with nested keys.

If default is anything but _MISSING, the given default is returned if the key does not exist.

init_from_dict(d)
Initialize a new AttrDict from the given dict. Handles any nested dicts by turning them into AttrDicts too:

d = AttrDict({'a': 1, 'b': {'x': 1, 'y': 2}})
d.b.x == 1 # True

keys_nested(subkeys_as=’list’)
Returns all keys in the AttrDict, sorted, including the keys of nested subdicts (which may be either regular
dicts or AttrDicts).

If subkeys_as='list' (default), then a list of all keys is returned, in the form ['a', 'b.b1',
'b.b2'].

If subkeys_as='dict', a list containing keys and dicts of subkeys is returned, in the form ['a',
{'b': ['b1', 'b2']}].

set_key(key, value)
Set the given key to the given value. Handles nested keys, e.g.:

d = AttrDict()
d.set_key('foo.bar', 1)
d.foo.bar == 1 # True

to_yaml(path=None, convert_objects=True, **kwargs)
Saves the AttrDict to the given path as a YAML file.

If path is None, returns the YAML string instead.

Any additional keyword arguments are passed to the YAML writer, so can use e.g. indent=4 to override
the default of 2.

convert_objects (defaults to True) controls whether Numpy objects should be converted to regular
Python objects, so that they are properly displayed in the resulting YAML output.

union(other, allow_override=False, allow_replacement=False)
Merges the AttrDict in-place with the passed other AttrDict. Keys in other take precedence, and
nested keys are properly handled.

If allow_override is False, a KeyError is raised if other tries to redefine an already defined key.

If allow_replacement, allow “_REPLACE_” key to replace an entire sub-dict.

class calliope.Parallelizer(target_dir, config_run=None)
Arguments:

•target_dir: path to output directory for parallel runs.

•config_run: path to YAML file with run settings. If not given, the included example run.yaml is used.

exception calliope.exceptions.ModelError
ModelErrors should stop execution of the model, e.g. due to a problem with the model formulation or input
data.

exception calliope.exceptions.ModelWarning
ModelWarnings should be raised for possible model errors, but where execution can still continue.

94 Chapter 2. API documentation

Calliope Documentation, Release 0.5.0

Index

2.2. Index 95

Calliope Documentation, Release 0.5.0

96 Chapter 2. API documentation

CHAPTER 3

Release history

Release History

0.5.0 (2017-05-04)

Major changes

new Urban-scale example model, major revisions to the documentation to accommodate it, and a new calliope.
examples module to hold multiple example models. In addition, the calliope new command now accepts a
--template option to select a template other than the default national-scale example model, e.g.: calliope
new my_urban_model --template=UrbanScale.

new Allow technologies to generate revenue (by specifying negative costs)

new Allow technologies to export their carrier directly to outside the system boundary

changed backwards-incompatible Revised technology definitions and internal definition of sets and subsets, in par-
ticular subsets of various technology types. Supply technologies are now split into two types: supply and
supply_plus. Most of the more advanced functionality of the original supply technology is now contained
in supply_plus, making it necessary to update model definitions accordingly. In addition to the existing
conversion technology type, a new more complex conversion_plus was added.

Other changes

• changed backwards-incompatible Creating a Model() with no arguments now raises a ModelError rather
than returning an instance of the built-in national-scale example model. Use the new calliope.examples
module to access example models.

• changed Improvements to the national-scale example model and its tutorial notebook

• changed Removed SolutionModel class

• fixed Other minor fixes

97

Calliope Documentation, Release 0.5.0

0.4.1 (2017-01-12)

• new Allow profiling with the --profile and --profile_filename command-line options

• new Permit setting random seed with random_seed in the run configuration

• changed Updated installation documentation using conda-forge package

• fixed Other minor fixes

0.4.0 (2016-12-09)

Major changes

new Added new methods to deal with time resolution: clustering, resampling, and heuristic timestep selection

changed backwards-incompatible Major change to solution data structure. Model solution is now returned as a single
xarray DataSet instead of multiple pandas DataFrames and Panels. Instead of as a generic HDF5 file, complete
solutions can be saved as a NetCDF4 file via xarray’s NetCDF functionality.

While the recommended way to save and process model results is by NetCDF4, CSV saving functionality has now
been upgraded for more flexibility. Each variable is saved as a separate CSV file with a single value column and as
many index columns as required.

changed backwards-incompatible Model data structures simplified and based on xarray

Other changes

• new Functionality to post-process parallel runs into aggregated NetCDF files in calliope.read

• changed Pandas 0.18/0.19 compatibility

• changed 1.11 is now the minimum required numpy version. This version makes datetime64 tz-naive by default,
thus preventing some odd behavior when displaying time series.

• changed Improved logging, status messages, and error reporting

• fixed Other minor fixes

0.3.7 (2016-03-10)

Major changes

changed Per-location configuration overrides improved. All technology constraints can now be set on a per-location
basis, as can costs. This applies to the following settings:

• techname.x_map

• techname.constraints.*

• techname.constraints_per_distance.*

• techname.costs.*

The following settings cannot be overridden on a per-location basis:

• Any other options directly under techname, such as techname.parent or techname.carrier

• techname.costs_per_distance.*

98 Chapter 3. Release history

http://xarray.pydata.org/en/stable/data-structures.html#dataset

Calliope Documentation, Release 0.5.0

• techname.depreciation.*

Other changes

• fixed Improved installation instructions

• fixed Pyomo 4.2 API compatibility

• fixed Other minor fixes

0.3.6 (2015-09-23)

• fixed Version 0.3.5 changes were not reflected in tutorial

0.3.5 (2015-09-18)

Major changes

new New constraint to constrain total (model-wide) installed capacity of a technology (e_cap.total_max), in
addition to its per-node capacity (e_cap.max)

changed Removed the level option for locations. Level is now implicitly derived from the nested structure given by
the within settings. Locations that define no or an empty within are implicitly at the topmost (0) level.

changed backwards-incompatible Revised configuration of capacity constraints: e_cap_max becomes e_cap.max,
addition of e_cap.min and e_cap.equals (analogous for r_cap, s_cap, rb_cap, r_area). The e_cap.equals
constraint supersedes e_cap_max_force (analogous for the other constraints). No backwards-compatibility is
retained, models must change all constraints to the new formulation. See Technology constraints for a complete list of
all available constraints. Some additional constraints have name changes:

• e_cap_max_scale becomes e_cap_scale

• rb_cap_follows becomes rb_cap_follow, and addition of rb_cap_follow_mode

• s_time_max becomes s_time.max

changed backwards-incompatible All optional constraints are now grouped together, under constraints.
optional:

• constraints.group_fraction.group_fraction becomes constraints.optional.
group_fraction

• constraints.ramping.ramping_rate becomes constraints.optional.ramping_rate

Other changes

• new analysis.map_results function to extract solution details from multiple parallel runs

• new Various other additions to analysis functionality, particularly in the analysis_utils module

• new analysis.get_levelized_cost to get technology and location specific costs

• new Allow dynamically loading time mask functions

• changed Improved summary table in the model solution: now shows only aggregate information for transmission
technologies, also added missing s_cap column and technology type

• fixed Bug causing some total levelized transmission costs to be infinite instead of zero

3.1. Release History 99

Calliope Documentation, Release 0.5.0

• fixed Bug causing some CSV solution files to be empty

0.3.4 (2015-04-27)

• fixed Bug in construction and fixed O&M cost calculations in operational mode

0.3.3 (2015-04-03)

Major changes

changed In preparation for future enhancements, the ordering of location levels is flipped. The top-level locations
at which balancing takes place is now level 0, and may contain level 1 locations. This is a backwards-incompatible
change.

changed backwards-incompatible Refactored time resolution adjustment functionality. Can now give a list of masks in
the run configuration which will all be applied, via time.masks, with a base resolution via time.resolution (or
instead, as before, load a resolution series from file via time.file). Renamed the time_functions submodule
to time_masks.

Other changes

• new Models and runs can have a name

• changed More verbose calliope run

• changed Analysis tools restructured

• changed Renamed debug.keepfiles setting to debug.keep_temp_files and better documented de-
bug configuration

0.3.2 (2015-02-13)

• new Run setting model_override allows specifying the path to a YAML file with overrides for the
model configuration, applied at model initialization (path is given relative to the run configuration file used).
This is in addition to the existing override setting, and is applied first (so override can override
model_override).

• new Run settings output.save_constraints and output.save_constraints_options

• new Run setting parallel.post_run

• changed Solution column names more in line with model component names

• changed Can specify more than one output format as a list, e.g. output.format: ['csv', 'hdf']

• changed Run setting parallel.additional_lines renamed to parallel.pre_run

• changed Better error messages and CLI error handling

• fixed Bug on saving YAML files with numpy dtypes fixed

• Other minor improvements and fixes

100 Chapter 3. Release history

Calliope Documentation, Release 0.5.0

0.3.1 (2015-01-06)

• Fixes to time_functions

• Other minor improvements and fixes

0.3.0 (2014-12-12)

• Python 3 and Pyomo 4 are now minimum requirements

• Significantly improved documentation

• Improved model solution management by saving to HDF5 instead of CSV

• Calculate shares of technologies, including the ability to define groups for the purpose of computing shares

• Improved operational mode

• Simplified time_tools

• Improved output plotting, including dispatch, transmission flows, and installed capacities, and added model
configuration to support these plots

• r can be specified as power or energy

• Improved solution speed

• Better error messages and basic logging

• Better sanity checking and error messages for common mistakes

• Basic distance-dependent constraints (only implemented for e_loss and cost of e_cap for now)

• Other improvements and fixes

0.2.0 (2014-03-18)

• Added cost classes with a new set k

• Added energy carriers with a new set c

• Added conversion technologies

• Speed improvements and simplifications

• Ability to arbitrarily nest model configuration files with import statements

• Added additional constraints

• Improved configuration handling

• Ability to define timestep options in run configuration

• Cleared up terminology (nodes vs locations)

• Improved TimeSummarizer masking and added new masks

• Removed technology classes

• Improved operational mode with results output matching planning mode and dynamic updating of parameters
in model instance

• Working parallel_tools

• Improved documentation

3.1. Release History 101

Calliope Documentation, Release 0.5.0

• Apache 2.0 licensed

• Other improvements and fixes

0.1.0 (2013-12-10)

• Some semblance of documentation

• Usable built-in example model

• Improved and working TimeSummarizer

• More flexible masking for TimeSummarizer

• Ability to add additional constraints without editing core source code

• Some basic test coverage

• Working parallel run configuration system

Release history

102 Chapter 3. Release history

CHAPTER 4

License

Copyright 2013-2017 Calliope contributors listed in AUTHORS

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

103

http://www.apache.org/licenses/LICENSE-2.0

Calliope Documentation, Release 0.5.0

104 Chapter 4. License

Bibliography

[Fripp2012] Fripp, M., 2012. Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renew-
able Energy. Environ. Sci. Technol., 46(11), p.6371–6378. DOI: 10.1021/es204645c

[Heussen2010] Heussen, K. et al., 2010. Energy storage in power system operation: The power nodes modeling
framework. In Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES. pp. 1–8.
DOI: 10.1109/ISGTEUROPE.2010.5638865

[Howells2011] Howells, M. et al., 2011. OSeMOSYS: The Open Source Energy Modeling System: An introduction
to its ethos, structure and development. Energy Policy, 39(10), p.5850–5870. DOI: 10.1016/j.enpol.2011.06.033

[Hunter2013] Hunter, K., Sreepathi, S. & DeCarolis, J.F., 2013. Modeling for insight using Tools for Energy Model
Optimization and Analysis (Temoa). Energy Economics, 40, p.339–349. DOI: 10.1016/j.eneco.2013.07.014

105

http://dx.doi.org/10.1021/es204645c
http://dx.doi.org/10.1109/ISGTEUROPE.2010.5638865
http://dx.doi.org/10.1016/j.enpol.2011.06.033
http://dx.doi.org/10.1016/j.eneco.2013.07.014

Calliope Documentation, Release 0.5.0

106 Bibliography

Python Module Index

c
calliope, 1
calliope.analysis, 90
calliope.constraints.base, 86
calliope.constraints.objective, 86
calliope.constraints.optional, 87
calliope.constraints.planning, 87
calliope.exceptions, 94
calliope.read, 90
calliope.time_clustering, 89
calliope.time_funcs, 88
calliope.time_masks, 88

107

Calliope Documentation, Release 0.5.0

108 Python Module Index

Index

A
apply_clustering() (in module calliope.time_funcs), 88
areas_below_resolution() (in module calliope.analysis),

90
as_dict() (calliope.utils.AttrDict method), 93
AttrDict (class in calliope.utils), 93

C
calliope (module), 1
calliope.analysis (module), 90
calliope.constraints.base (module), 86
calliope.constraints.objective (module), 86
calliope.constraints.optional (module), 87
calliope.constraints.planning (module), 87
calliope.exceptions (module), 94
calliope.read (module), 90
calliope.time_clustering (module), 89
calliope.time_funcs (module), 88
calliope.time_masks (module), 88
check_and_set_export() (calliope.Model method), 83
cophenetic_corr() (in module calliope.time_clustering),

89
copy() (calliope.utils.AttrDict method), 93

D
del_key() (calliope.utils.AttrDict method), 93
drop() (in module calliope.time_funcs), 88

E
extreme() (in module calliope.time_masks), 88

F
fancy_dendrogram() (in module cal-

liope.time_clustering), 89
from_yaml() (calliope.utils.AttrDict class method), 93
from_yaml_string() (calliope.utils.AttrDict class

method), 93
functionality_switch() (calliope.Model method), 83

G
generate_model() (calliope.Model method), 83
generate_variables() (in module cal-

liope.constraints.base), 86
get_capacity_factor() (calliope.Model method), 84
get_carrier() (calliope.Model method), 84
get_clusters_hierarchical() (in module cal-

liope.time_clustering), 89
get_clusters_kmeans() (in module cal-

liope.time_clustering), 89
get_constraint_param() (in module cal-

liope.constraints.base), 87
get_cost_param() (in module calliope.constraints.base),

87
get_cp_carriers() (calliope.Model method), 84
get_delivered_cost() (in module calliope.analysis), 90
get_distances() (calliope.Model method), 84
get_domestic_supply_index() (in module cal-

liope.analysis), 90
get_eff_ref() (calliope.Model method), 84
get_group_members() (calliope.Model method), 84
get_group_share() (in module calliope.analysis), 90
get_hhi() (in module calliope.analysis), 90
get_key() (calliope.utils.AttrDict method), 93
get_levelized_cost() (calliope.Model method), 85
get_levelized_cost() (in module calliope.analysis), 90
get_option() (calliope.Model method), 85
get_parent() (calliope.Model method), 85
get_swi() (in module calliope.analysis), 91
get_t() (calliope.Model method), 85
get_timeres() (calliope.Model method), 85
get_totals() (calliope.Model method), 85
get_unmet_demand_hours() (in module cal-

liope.analysis), 91
get_var() (calliope.Model method), 85
group_fraction() (in module cal-

liope.constraints.optional), 87

109

Calliope Documentation, Release 0.5.0

I
init_from_dict() (calliope.utils.AttrDict method), 94
initialize_timeseries() (calliope.Model method), 85
ischild() (calliope.Model method), 86

K
keys_nested() (calliope.utils.AttrDict method), 94

L
load_results() (calliope.Model method), 86

M
map_clusters_to_data() (in module cal-

liope.time_clustering), 89
map_results() (in module calliope.analysis), 91
max_r_area_per_loc() (in module cal-

liope.constraints.optional), 87
Model (class in calliope), 83
ModelError, 94
ModelWarning, 94

N
node_constraints_build_total() (in module cal-

liope.constraints.planning), 87
node_constraints_transmission() (in module cal-

liope.constraints.base), 87
normalized_copy() (in module calliope.time_funcs), 88

O
objective_cost_minimization() (in module cal-

liope.constraints.objective), 86

P
Parallelizer (class in calliope), 94
plot_carrier_production() (in module calliope.analysis),

91
plot_installed_capacities() (in module calliope.analysis),

91
plot_timeseries() (in module calliope.analysis), 92
plot_transmission() (in module calliope.analysis), 92
prev_t() (calliope.Model method), 86
process_solution() (calliope.Model method), 86

R
ramping_rate() (in module calliope.constraints.optional),

87
read_data() (calliope.Model method), 86
read_dir() (in module calliope.read), 90
read_netcdf() (in module calliope.read), 90
run() (calliope.Model method), 86

S
save_solution() (calliope.Model method), 86

scale_to_peak() (calliope.Model method), 86
set_key() (calliope.utils.AttrDict method), 94
set_option() (calliope.Model method), 86
solve() (calliope.Model method), 86
solve_iterative() (calliope.Model method), 86
system_margin() (in module cal-

liope.constraints.planning), 87

T
to_yaml() (calliope.utils.AttrDict method), 94

U
union() (calliope.utils.AttrDict method), 94

Z
zero() (in module calliope.time_masks), 89

110 Index

	User guide
	Introduction
	Download and installation
	Components to build a model
	Tutorials
	Model formulation
	Model configuration
	Run configuration
	Running the model
	Analyzing results
	Configuration reference
	Built-in example models
	Development guide

	API documentation
	API Documentation
	Index

	Release history
	Release History

	License
	Bibliography
	Python Module Index

